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X-ray absorption (XA) spectroscopy enables us to probe the electronic struc-

ture and magnetic ordering in, for example, thin-film systems. The photon–

matter interaction contains both nonresonant and resonant terms, but only the

latter have a strong sensitivity to the spin and orbital moments of the valence

shell. Selection rules in XA provide us with a probe to study the local magnetic

ground state. The branching ratio of the spin–orbit split core-level spectra is

proportional to the ground-state spin–orbit interaction and can also provide a

measure of the spin state. The angular dependence of the X-ray magnetic

circular dichroism (XMCD) can be described as a sum over an isotropic and an

anisotropic contribution, where the latter is linearly proportional to the axial

distortion due to strain. The anisotropic properties of magnetic materials are

essential to maintain the preferred magnetization direction. These properties,

such as the magnetocrystalline anisotropy energy (MAE), have their origin in

the orbital moment anisotropy, which can be studied element-specifically using

angular-dependent XMCD. Alternatively, the MAE can also be studied using

X-ray magnetic linear dichroism (XMLD).

1. Introduction

Much progress has been made since the mid-1980s in the study

of magnetic materials using X-ray spectroscopy, an area of

research that had previously been the sole domain of neutron

scattering. The realization that resonant transitions into the

unoccupied valence shell in polarized X-ray absorption and

scattering experiments can provide unique element-specific

spin and orbital moment information has led to an upturn

in theoretical and experimental studies. In this chapter and

the next, we will outline some of the many opportunities of

magnetic X-ray spectroscopies. In order to fully appreciate the

underlying principles we introduce the interaction of photons

with matter, as well as resonant processes. The isotropic (i.e.

nonpolarized) spectrum gives information about the charge

distribution and spin–orbit interaction, but the spin and

orbital properties can only properly be probed using circularly

polarized X-rays.

Many contemporary and future applications of magnetic

materials are linked to their anisotropic magnetic properties,

such as the magnetocrystalline anisotropy energy (MAE),

perpendicular magnetic anisotropy and interfacial magnetic

coupling, which have their origin in the spin–orbit interaction

(van der Laan, 1998a). It will be shown how the resulting

anisotropy in the orbital moment can be probed element-

specifically using the angular dependence of the X-ray

magnetic circular-dichroism (XMCD) signal.
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2. Photon–matter interaction

In the relativistic photon–matter interaction Hamiltonian,

Hint, the leading terms, which explicitly contain the vector

potential A, are (Blume, 1985)

Hint ¼
PN

n¼1

�
e

mc
Aðk; rnÞ � pn þ

e2

2mc
A2ðk; rnÞ

þ
eh-

2mc
rn � r �Aðk; rnÞ þ � � �

�

; ð1Þ

where rn and pn are the position vector and momentum

operator of the nth electron, respectively, k is the photon

wavevector, e is the elementary charge, m is the electron rest

mass and c is the speed of light. The first two terms arise from

expansion of the kinetic energy operator (1/2m)[p � (e/c)A]2,

while the third term comes from the Dirac equation, where rn

is the spin-vector operator whose components are the Pauli

matrices. For brevity, we will omit the summation over n in the

following.

The A · p term in Hint gives the X-ray absorption (XA),

resonant elastic X-ray scattering (REXS) and resonant

inelastic scattering (RIXS). The A2 term gives, apart from the

familiar Thomson scattering, the nonresonant inelastic scat-

tering (NIXS) and Compton scattering. The r · r � A = r · B

term gives the magnetic scattering.

3. X-ray absorption

Converting the matrix element to the length form using the

equation of motion

p � � ih-r ¼
m

ih-
½r;H0�; ð2Þ

whereH0 is the ground-state Hamiltonian, and expanding the

vector potential

Aðk; rÞ ¼ """ðkÞ expðik � rÞ; ð3Þ

where """(k) is the photon polarization vector, gives

hfjA � pjii ¼
m

ih-
ðEf � EiÞhfjð""" � rÞ expðik � rÞjii: ð4Þ

The lowest order term is the electric dipole transition

operator """ · r, which can be written in normalized spherical

harmonics as

""" � r ¼
P

j¼x;y;z

"jrj ¼ r
P

q

Cð1Þ�q ð"""Þ � C
ð1Þ
q ðr̂Þ; ð5Þ

where q = � 1, 0, +1 correspond to left-circular, z-linear and

right-circular photon polarization, respectively.

4. Selection rules

The electron excited from a core level probes the local

unoccupied density of states (DOS). The spectral intensity for

q-polarized light is given by Fermi’s golden rule, in the case of

the electric dipole approximation, as

Iqð!Þ ¼ jh fðj
0m0ÞjCð1Þq ðr̂Þj iðjmÞij

2�ðEf � Ei � h- !Þ: ð6Þ

In the presence of a magnetic field the j level is split into m

sublevels, and spin–orbit interaction couples the orbital states

to the magnetic field. If all directions in space are equivalent,

then the atom will be in any of the m levels with equal

probability. Therefore, a degenerate, filled state has spherical

symmetry, without any spatial orientation. When the

symmetry is broken, the state splits into levels with different

angular distributions and hence a different polarization

dependence. Thus, the energy splitting (i.e. symmetry

breaking) and the angular or polarization dependence are two

different sides of the same coin.

The above can be formalized by considering that the direct

product of the irreducible representations, � , for the initial

and final states and the transition operator must contain the

total symmetric representation, i.e. � [ f(j0m0)]* � � (1, q) �

� [ i(jm)] = A1 + . . . , which in cylindrical symmetry means

that � m0 + q + m = 0. Thus, conservation of angular

momentum gives the selection rule �m = m0 � m = q

(= 0, �1). Hence, from the magnetic ground state m only a

limited subset of final states can be reached. This means that

the spectrum is a fingerprint of the specific ground state with a

high sensitivity to crystal-field splitting, spin–orbit interaction,

site symmetry and spin configuration. The polarization

dependence makes the absorption sensitive to the ground-

state magnetic moment. Even with unpolarized light, only a

small number of final states can be reached.

The electric dipole operator in equation (6) has spherical

components rC
ð1Þ
0 ðr̂Þ ¼ ẑ and rC

ð1Þ
�1ðr̂Þ ¼ �ð1=21=2Þðx̂� iŷÞ,

resulting in the spectra

I0 ¼ Iz and I�1 ¼
1

2
ðIx þ Iy � IXMCDÞ; ð7Þ

in which IXMCD arises from the imaginary off-diagonal matrix

elements, which require complex wavefunctions (m 6¼ 0),

where the time-reversal symmetry is broken (Kramers’

degeneracy).

By taking linear combinations of the Iq spectra, the spectral

intensity in equation (6) can be separated into a geometrical

part and a physical (or dynamic) part, where the latter gives

the fundamental spectra

I0 ¼ I� 1 þ I0 þ Iþ1 ðisotropic spectrumÞ;

I1 ¼ I� 1 � Iþ1 ðXMCDÞ;

I2 ¼ I� 1 � 2I0 þ Iþ1 ðXMLDÞ: ð8Þ

Linearly polarized X-rays measure the charge anisotropy

and hence give orientational sensitivity (searchlight effect).

While circular polarized light can measure the direction of the

magnetic moment, hMi, the XMLD is proportional to hM2i,

which apart from ferromagnets and ferrimagnets can also be

used for antiferromagnets, which have no net total magnetic

moment.

In the XA measurements the signal is averaged over the

probed sample volume. This differs from resonant elastic

X-ray scattering (REXS), where the interference between the

scattered photon paths gives information on the long-range

structural order and, by using polarized light, also the
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magnetic order. However, in inelastic scattering, such as NIXS

and RIXS, the coherence between the scattered photons is

lost.

From equation (6) it can be seen that photons only interact

with the orbital part of the wavefunction, whereas the spin

moment is conserved in the transition. This orbital sensitivity

allows the spin and orbital properties of the ground state to be

separated, which enables us to study specific orbital effects

such as orbital ordering and the Jahn–Teller effect. Using the

sum rules (Thole et al., 1992; Carra et al., 1993), the integrated

intensities over the spin–orbit split-core manifold give the

expectation values of the spin and orbital moments in the

ground state.

5. Calculational aspects

Itinerant models for the electronic structure calculation are

based on single-particle transitions into the empty DOS. Most

ab initio methods to calculate the DOS use density-functional

theory (DFT) plus a mean-field approximation, and for

magnetic materials spin-dependent potentials and spin–orbit

interaction have to be taken into account.

DFT calculations can be performed either in real space

using multiple scattering (MS) or in reciprocal space using

band-structure methods. The ground state in DFT is expressed

as a function of the electron density. Its practical application is

called the local (spin) density-functional approach (LDA),

where the kinetic, nuclear and Hartree potentials are taken

into account, with the exchange and correlation effects

described by a combined potential. Single-particle calculations

(DFT and LDA) give usually good results for the K edges;

however, multiplet calculations are needed for transition-

metal L and M edges and lanthanide and actinide L, M, N and

O edges.

Due to the strong core-hole interaction in localized mate-

rials, the near-edge spectral structure does not display the

undistorted unoccupied DOS. The core-hole screening

contains a monopole and an angular part. While the direct

core–valence Coulomb interaction (i.e. the core-hole poten-

tial) is well screened in molecules and solids, the higher-order

terms (the Slater integrals) are poorly screened, causing a

multiplet structure. In this case, a single-particle model will fail

and multiplet theory is instead required, which includes the

atomic Coulomb and exchange interactions.

The multiplet structure provides a fingerprint for the local

ground state, and subtle changes in the magnetic interactions,

such as those induced by exchange interaction and spin–orbit

interaction, can be distinguished. In the dipole approximation

the near-edge spectrum corresponds to resonant transitions,

such as dn + h- !i! p5dn+1 in d metals or f n + h- !i! d9f n+1 in f

metals. Spectral differences are particularly pronounced when

the symmetry of the ground state changes. Crystal- and ligand-

field interactions can be included in the multiplet code using

group theory. Hybridization and charge-transfer interactions

can be taken into account using a model Hamiltonian, similar

to the Hubbard–Anderson impurity model.

6. Influence of ground-state moments on XA spectra

6.1. Spectral distribution analysis

Consider a core level with nonzero orbital quantum number

(lc 6¼ 0), which is split by spin–orbit interaction into two levels

j = lc � s. The j levels are split into sublevels mj due to core–

valence exchange interaction, or in the case of a one-electron

model an effective field acting on the core level. The core p to

valence d transitions in the L2,3 XA can be described using

sum rules and moment analysis. The influence of the ground-

state moments on the isotropic spectrum is illustrated in Fig. 1

using the one-electron model in an itinerant d metal, under the

assumption that j is a good quantum number (van der Laan,

1997). The intensity is proportional to the number of d holes,

nh, giving an integrated signal with statistical ratio L3:L2 = 2:1.

The ground-state spin–orbit interaction, hl · si, shifts spectral

weight from the L2 to the L3 edge. For all other ground-state

moment contributions the integrated intensity over the sepa-

rate L3 and L2 edges is zero. The orbital moment Lz, the spin

moment Sz and the magnetic dipole term Tz =

½
P

i si � 3r̂iðr̂i � siÞ�z shift the spectral weight to lower energy

within the L3 peak, causing an asymmetric line shape. In the

L2 peak the intensity shift is opposite for Lz. The charge

quadrupole moment Qzz only affects the L3 edge. The influ-

ence of the spin–orbit interaction is discussed in more detail in

Section 6.2.

6.2. Branching ratio

The most distinctive feature in the isotropic XA spectra is

the branching ratio B, which is defined as the fraction of the

total transition probability in the 2p3/2 manifold. For d-metal
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Figure 1
Schematic influence of the various ground-state moments on the isotropic
L2,3 XA for an itinerant d metal using a one-electron model.



L2,3 edges, the spin–orbit sum rule can be formulated as

(Thole & van der Laan, 1988)

B �
IðL3Þ

IðL3Þ þ IðL2Þ
¼

2

3
þ
hgj
P

ili � sijgi

nh

: ð9Þ

Hence, B is proportional to the ground-state expectation value

of the angular part of the spin–orbit interaction hl · si per d

hole. Without valence-band spin–orbit interaction B = 2
3
, which

represents the statistical ratio. When the initial-state crystal-

field term is split into sublevels by a spin–orbit interaction that

is small compared with the crystal field, each sublevel has a

different branching ratio, decreasing with increasing energy.

If the p3/2 and p1/2 manifolds are mixed due to electrostatic

core–valence interaction, the core-level angular momentum j

is no longer a good quantum number. High-spin states will

then have a larger branching ratio on average than low-spin

states. Due to the selection rule �S = 0 in combination with

conservation of angular momentum, a ground state with a

higher spin state is then favoured by a transition from a higher

core-level j state (Thole & van der Laan, 1988).

7. Angular dependence of XMCD

The magnetic anisotropic properties of materials can be

studied microscopically and element-specifically using XMCD,

which also allows the spin and orbital contributions to the

magnetic moment to be separated.

The angular-dependent XMCD can be expressed as a sum

over terms that are the product of an energy-dependent

spectrum and an angular distribution. Each of these terms

must be invariant under all symmetry operations for the site,

i.e. total symmetric. Since the photon polarization is a vector,

there can be no more than three different fundamental

XMCD spectra in arbitrary symmetry. For orthorhombic

lattice symmetry, for example, any XMCD spectrum can be

written as the linear combination,

IXMCD ¼ IxðP � x̂Þðx̂ � M̂Þ þ IyðP � ŷÞðŷ � M̂Þ þ IzðP � ẑÞðẑ � M̂Þ;

ð10Þ

where P = � i("""* � """) is the helicity vector, M̂ is the sample

magnetization and Ix, Iy and Iz are the XMCD spectra for

P k M̂ along x̂, ŷ and ẑ, respectively (van der Laan, 1998b).

This means that each XMCD spectrum has a distinct angular

dependence, as determined by symmetry.

In axial symmetry Iy = Ix, and the number of distinct XMCD

spectra reduces to two. For small distortions, Iz will be similar

to Ix, which means that it is advantageous to introduce the

isotropic and anisotropic (or quadrupolar) XMCD spectra,

I0 = 1
3
(Ix + Iy + Iz) and I2 = 2

3
Iz �

1
3
(Ix + Iy), respectively, which

have different shapes and I2 � I0. The angular-dependent

XMCD can be rewritten as

IXMCD ¼ I0 P � M̂þ I2

3

2
ðP � ẑÞðẑ � M̂Þ �

1

2
P � M̂

� �

¼ I0 cosð� � �Þ þ I2

3

2
cos � cos� �

1

2
cosð� � �Þ

� �

;

ð11Þ

where � and � are the angles of P and M̂, respectively, with the

ẑ axis of the axial symmetry, which is usually the sample

surface normal. Equation (11) means that the pure I0 and I2

spectra can be measured in selected geometries using

IXMCDðP k M̂Þ ¼ I0 þ I2

3

2
cos2 � �

1

2

� �

¼ Iz cos2 �þ Ix sin2 �;

IXMCDðP ? M̂Þ ¼
3

4
I2 sin 2� ¼

1

2
ðIz � IxÞ sin 2�: ð12Þ

For � = � = 54.7�, we obtain IXMCD = I0. For � = 54.7� and

� � � = 90�, we obtain IXMCD = I2/21/2.

The ratio I2:I0 gives the amount of distortion of the cubic

crystal field by the axial field due to, for example, strain as in

the case of MnCr2O4 films (van der Laan et al., 2010). In the

next section we will apply this formalism to determine the

magnetocrystalline anisotropy using the sum rules.

8. Magnetocrystalline anisotropy energy

The anisotropic magnetic properties, such as the magneto-

crystalline anisotropy energy (MAE), easy magnetization

direction, magnetostriction and coercivity, all depend on the

orbital moment anisotropy, which can be studied element-

specifically using angular-dependent XMCD (Stöhr & König,

1995; van der Laan, 1998a). We limit ourselves here to 3d

transition metals. In this case, the spin–orbit constant is small

(40–80 meV) compared with the 3d band width of a few eV, so

that we can use perturbation theory. Assuming that the

majority spin band is completely filled, the MAE will be

proportional to the difference between the orbital moments

along the easy and hard directions (Bruno, 1989), where the

orbital moment is largest along the easy direction. This model

was corroborated for a gold/cobalt/gold staircase structure,

although a proportionality factor was required to scale the

anisotropic part (Weller et al., 1995).

The MAE is defined as EðM̂ ? ẑÞ � EðM̂ k ẑÞ, where ẑ is

along the easy direction of magnetization. Sum rules for the

electric dipole transition from a core level can measure the

orbital moment tensor of the valence shell up to second rank.

Therefore, taking a uniaxial symmetry, where the spin S || M

makes an angle ’ with ẑ, the orbital moment L will be written

as a second-rank tensor

hLðM̂Þi ¼ hLii þ hLaiC
ð2Þ
0 ðM̂Þ; ð13Þ

with reduced spherical harmonic C
ð2Þ
0 ðM̂Þ = 3

2
ðM̂ � ẑÞ2 � 1

2
=

3
2

cos2 � � 1
2

and
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hLii �
1

3
½hLxi þ hLyi þ hLzi�; ð14Þ

hLai �
1

3
½2hLzi � hLxi � hLyi�; ð15Þ

are the isotropic and anisotropic parts of the orbital moment,

respectively. Note that from equation (13), hLzi = hLii + hLai.

Integrating the XMCD spectra in equation (12) and using

the orbital sum rule (Thole et al., 1992),

hLzi ¼ wz ¼
2nh

A

R

L3

IXMCD þ
R

L2

IXMCD

 !

; ð16Þ

where A ¼
R

L3þL2
Iiso and wz is the measured integrated

intensity for P k M̂ k ẑ, gives the angular dependence for

parallel and transverse geometry as (van der Laan, 1998b)

wðP k M̂Þ ¼ w0 þ w2

3

2
cos2 � �

1

2

� �

¼ wz cos2 �þ wx sin2 �;

wðP ? M̂Þ ¼
3

4
w2 sin 2� ¼

1

2
ðwz � wxÞ sin 2�; ð17Þ

where � ¼ ffðẑ; M̂Þ, w0 = hLii and w2 = hLai. This gives the

angle from L to M as

ffðL;MÞ ¼ arctan
3w2 sin 2�

4w0 þ w2ð6 cos2 � � 2Þ

� �

’
3

4

w2

w0

sin 2�þO
w2

w0

� �2

: ð18Þ

For small anisotropy, the maximum in the angle ffðL;MÞ will

be near � = 45� and proportional to w2/w0.

The angular dependence offers two different ways to

measure the magnetic anisotropy, namely in parallel and

transverse geometry (Dürr & van der Laan, 1997), which are

illustrated in Figs. 2(a) and 2(b), respectively.

The angular dependence of the effective spin moment can

be written similarly as

hSeffðM̂Þi ¼ hSzi þ
7

2
hTziC

ð2Þ
0 ðM̂Þ; ð19Þ

where

hSzi �
1

3
ðhSeff

x i þ hS
eff
y i þ hS

eff
z iÞ; ð20Þ

7

2
hTzi �

1

3
ð2hSeff

z i � hS
eff
x i � hS

eff
y iÞ; ð21Þ

give the (isotropic) spin moment Sz and the (anisotropic)

magnetic dipole term Tz, respectively. Note that

hSeff
z i ¼ hSzi þ

7
2
hTzi.

Using the spin sum rule (Carra et al., 1993)

hSeff
z i ¼ wz ¼

3nh

2A

R

L3

IXMCD � 2
R

L2

IXMCD

 !

; ð22Þ

we obtain equation (17) again but now with w0 = hSzi and

w2 ¼
7
2
hTzi. The angle from T to M is

ffðT;MÞ ¼ arctan
3 sin 2�

1þ 3 cos 2�

� �

: ð23Þ

Note that Tz / w2 has the properties of a traceless Cartesian

tensor. The angular dependence of the various moments is

given in Table 1.

Instead of measuring the XMCD with the polarization

vector and magnetization direction parallel (P || M) along the

different crystal directions, the MAE can also be obtained

from a single XMCD measurement in transverse geometry

(P?M and not collinear with easy axes; Dürr & van der Laan,

1996). By forcing the electron spins out of the easy direction

using an external magnetic field and measuring the perpen-

dicular component of the orbital moment with the polarization

vector perpendicular to the magnetization direction it is

possible to directly determine the element-specific easy

direction of magnetization (see Fig. 2b; Dürr et al., 1997).

9. Comparison with XMLD

The MAE can also be obtained from XMLD. Sum rules relate

the integrated intensities of the sum and the weighted differ-

ence of the XMLD over the L2,3 edges to the charge quad-
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Figure 2
Different geometries for measuring the magnetic anisotropy. The easy
axis of magnetization is along z, where the orbital magnetic moment is
highest. The spin moment is isotropic. (a) Parallel geometry (P || M). The
anisotropy in the orbital moment is obtained as the difference in the
integrated XMCD measured along two different magnetization direc-
tions. (b) Transverse geometry (P?M and not collinear with a symmetry
axis). Competition between spin–orbit coupling and crystal-field inter-
action gives L? = 1

2
(Lz � Lx)sin2� along P. In transverse geometry only a

single XMCD measurement is needed, compared with two in parallel
geometry.

Table 1
Expectation values of w for M || P and M ? P at different angles �,
together with the directions of L and T with respect to M. It is seen that T
rotates from parallel to perpendicular to antiparallel to M.

� = ffðz;MÞ (�) w(M || P) w(M ? P) ffðL;MÞ ffðT;MÞ (�)

0 w0 + w2 0 0� 0

45 w0 + 1
4
w2 � 3

4
w2 �3

4
(w2/w0) rad 71.57

54.74 w0 � 1
2
21/2w2 �1

2
21/2(w2/w0) rad 90

90 w0 �
1
2
w2 0 0� 180



rupole moment and the anisotropic part of the spin–orbit

interaction, respectively (van der Laan, 1999).

In 3d metals Hsoc = ��, where the radial part � is scalar (40–

80 eV) and the angular part is the operator � = l · s, and is a

small perturbation, so that the MAE can be expressed in terms

of the spin–orbit interaction as

�E ¼
1

2
�h�i: ð24Þ

Hence, the MAE branching ratio of the XMLD is directly

proportional to the MAE.

When all d holes have minority spin, h�i ¼ � 1
2

Ŝ � hLi, we

can retrieve Bruno’s formula (Bruno, 1989) from equation

(24),

�E ¼ �
1

4
�Ŝ � hLi: ð25Þ

When there are also d holes with majority spin,

�E ¼ �
1

4
�Ŝ � ðhL"i � hL#iÞ; ð26Þ

where L changes sign when S is reversed (time-reversal

symmetry). In principle, hL"i � hL#i would be accessible from

peak asymmetries. However, the orbital sum rule gives the

total projected orbital moment Ŝ � ½hL"i þ hL#i�.

The angular dependence of the spin–orbit interaction is

h�ðM̂Þi ¼ h�ii þ h�ai C
ð2Þ
0 ðM̂Þ þ

3

5
U222ðẑ; M̂;PÞ

� �

; ð27Þ

where

h�ii ¼
1

3
ðhlxsxi þ hlysyi þ hlzsziÞ; ð28Þ

h�ai ¼
1

3
ð2hlxsxi � hlysyi � hlzsziÞ: ð29Þ

The extra term in equation (27), containing the bipolar

spherical harmonic

U222ðẑ; M̂;PÞ ¼
1

2

�

2 � 3ðẑ � M̂Þ
2
� 3ðP � M̂Þ

2
� 3ðP � ẑÞ

2

þ 9ðP � ẑÞðẑ � M̂ÞðM̂ � PÞ

�

; ð30Þ

arises from the linear dichroism (van der Laan, 1999). Using

the XMLD rule (van der Laan, 1999) we obtain the angular

dependence of the spin–orbit interaction, which can then be

used in equation (24) to obtain the MAE.

10. Conclusions

The photon–matter interaction contains an A · p term which

becomes large near the core-to-valence resonances. Selection

rules severely curtail the number of allowed transitions, which

makes the spectrum a fingerprint for the specific ground state

with a high sensitivity to the crystal field, spin–orbit inter-

action, site symmetry and spin configuration. The polarization

dependence makes the absorption sensitive to the ground-

state magnetic moment. Even with unpolarized light only a

limited number of final states can be reached. The branching

ratio of the spin–orbit split core-level spectra is proportional

to the ground-state spin–orbit interaction and can furthermore

provide a measure for the spin state.

The polarized X-ray absorption signal from a core level to

the valence band depends strongly on the directions of the

polarized light and the magnetization with respect to the

lattice orientation. By including angular-dependent effects we

can extend the sum rules which relate the integrated signals

over the absorption edges to the expectation values of the

spin–orbit coupled ground-state multipole moments. The

angular dependence allows us to separate ground-state

moments which are indistinguishable in a collinear geometry,

such as the spin moment and the magnetic dipole term.
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