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The underlying theoretical aspects of X-ray spectroscopies are recapitulated

with special emphasis on applications to magnetic systems. Prominence is placed

on common conceptual aspects, while highlighting the differences in information

that they may offer. X-ray scattering can be used to investigate the electronic

and magnetic long-range order in crystals and ordered materials. The crystal

symmetry of the sample and the X-ray polarization state have a profound effect

on the scattering amplitude of X-ray resonant magnetic scattering (XRMS).

Expressions for X-ray magnetic circular and linear dichroism (XMCD and

XMLD, respectively) can be derived directly from those for XRMS. The

photon–matter interaction for electric and magnetic multipole fields is

presented from a general point of view, which reveals the physical implications

of the various terms in the cross section for X-ray absorption. X-ray optical

activity is due to mixed terms of different multipole rank of the electric and

magnetic fields. The different optical effects, such as XMCD, X-ray natural

circular dichroism (XNCD) and X-ray magnetic chiral dichroism (XM�D), can

be distinguished by their properties under space inversion and time reversal.

1. Introduction

The theoretical concepts behind magnetic synchrotron tech-

niques are based on quantum mechanics and provide very rich

grounds for experimental exploration. The aim of this chapter

is to present a general framework that shows the current and

future capabilities, although many details are skipped due to

page-length considerations. We will first present the general

expressions for the scattering amplitude in nonresonant and

resonant elastic scattering. From this, expressions for X-ray

magnetic circular and linear dichroism (XMCD and XMLD,

respectively) are obtained using the optical theorem. Taking

crystal-field interaction into account leads to a remarkable

result for XMLD.

The advantage of X-ray resonant magnetic scattering

(XRMS), compared with other absorption spectroscopies, is

that the scattering amplitudes from the various sites interfere

coherently, which gives a sensitivity to long-range order.

XRMS allows us to investigate the physics of higher order

multipoles for the study of strongly correlated electron

systems.

We review the interaction of electric and magnetic multi-

pole fields with matter and explain the origin of X-ray optical

activity.

2. X-ray magnetic scattering

2.1. Scattering amplitude

The first magnetic scattering experiment was carried out on

NiO under nonresonant conditions (de Bergevin & Brunel,

1981). Subsequent magnetic scattering at resonance (Hannon
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et al., 1988) showed an enhancement of several orders of

magnitude in the scattering amplitude, and also showed a

strong dependence on the polarization state of the incident

and scattered X-rays. This can be formally taken into account

by describing the atomic scattering amplitude as a tensor

quantity, instead of a scalar, with consequences for the selec-

tion rules of the diffracted intensity. The tensor products

associated with the scattering amplitude must belong to the

totally symmetric representation of the point group at the

resonating ion.

In the scattering process, the incident and scattered photons

are characterized by wavevectors k and k0, unit polarization

vectors """ and """0 and energies h- !k and h- !k0 , respectively.

Initially, the electrons are in the ground state |gi with energy

Eg. Within the first Born approximation the differential cross

section for coherent elastic X-ray scattering (! � !k0 ¼ !k) is

d�

d�
¼ r2

0

P

j

fjð"""
0; """; k0; k; !Þ expðiq � rjÞ

�
�
�
�
�

�
�
�
�
�

2

; ð1Þ

where r0 = e2/mc2 is the classical electron radius, fj is the

scattering amplitude of the electron at lattice position rj and

q = k � k0 is the scattering vector.

Using the photon–matter interaction Hamiltonian

Hin / A2 þA � pj þ sj �H (see also Section 2 of van der Laan

& Figueroa, 2024) the scattering amplitude in the Kramers–

Heisenberg formalism can be written as (Sakurai, 1985;

Blume, 1985)

f ð"""0; """; k0; k; !Þ ¼ """0� � hgjFðk0; k; !Þjgi � """; ð2Þ

with the scattering tensor

Fðk0; k; !Þ ¼ �
P

j

expðiq � rjÞ �
ih- !

mc2

P

j

expðiq � rjÞ

�
iq� pj

h- q2
� a � sj � b

� �

þ
P

n

Eg � En

mh- !

�
Jyðk0ÞjnihnjJðkÞ

Eg � En þ h- !þ i� n=2

�
JðkÞjnihnjJyðk0Þ

Eg � En � h- !

�

; ð3Þ

where pj and sj are the momentum operator and the spin at site

j, respectively. Substituting into Hint the magnetic field

H = � ik � A with vector potential A = """exp(ik · r), and using

s · (k � """) = (k � s) · """, the current operator can be written

as JðkÞ ¼
P

j expðik � rjÞðpj � ih- k� sjÞ, which reduces to

JE1 ¼
P

j pj for electric dipole transitions.

The first term in equation (3) gives the Thomson scattering

amplitude f0 originating from the isotropic charge-density

distribution. It also gives incoherent processes, such as non-

resonant inelastic scattering (NIXS) and Compton scattering.

The magnetic Compton profile, which can be measured with

high-energy circularly polarized X-rays (100–200 keV),

corresponds to the difference in the one-dimensional projec-

tion of the spin-polarized electron momentum density for

majority and minority spin bands.

The second term in equation (3) gives the nonresonant

X-ray magnetic scattering amplitude, which is due to the

orbital and spin magnetic density contributions. The vectors a

and b contain the coupling between the photon polarization

and the scattering vectors. The third term, also known as the

anomalous or dispersive term, gives the resonant amplitude,

f XRMS = f 0 � if 00, arising from the core–valence transitions.

f XRMS probes the intermediate states |ni with energy En,

selected at the photon energy h- ! = En � Eg with a full width

� n for the lifetime. The intermediate state in the resonance

process enables additional excitation paths that are otherwise

not allowed in the direct transition, such as spin-flip transitions

and forbidden transitions (see Section 2.3). The resonance

term can be ascribed to virtual transitions of an electron from

a core state to an unoccupied state above the Fermi level. This

is schematically illustrated in Fig. 1(a) for the soft X-ray

excitation 3dn ! 2p53dn+1 ! 3dn in a magnetic transition-

metal ion.

In contrast to absorption spectroscopies such as X-ray

absorption spectroscopy (XAS) and resonant inelastic X-ray

scattering (RIXS), in XRMS the scattering amplitudes from

the various sites interfere coherently, which gives a sensitivity

to long-range structural, magnetic and multipolar order.

The most important absorption edges for hard XRMS cover

the energy range 3.5–15 keV, which includes the 3d metal K

edges, rare-earth L edges and actinide L edges, with scattering

amplitudes of �0.01–0.1r0. In the soft X-ray region there is a

huge enhancement of the resonant amplitude of�100r0 for 3d

metal L edges and rare-earth M edges. However, in order to

fulfil the scattering condition the X-ray wavelength must be

shorter than two times the lattice periodicity of the crystalline
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Figure 1
Soft X-ray resonant magnetic scattering. (a) Schematic picture of the
resonant scattering process in a 3d transition-metal ion, showing the
virtual transitions between the 2p core level and empty spin-polarized 3d
states. The core level is split by the strong spin–orbit interaction, which
leads to a difference in the electric dipole transition probability for left-
and right-circularly polarized X-rays. (b, c) The real and imaginary parts
of the (b) charge scattering (f 0c and f 00c ) and (c) magnetic scattering (f 0m and
f 00m) at the Fe L2,3 edges of metallic iron.



ordered magnetic structure. The resonant magnetic scattering

can be distinguished from the Thomson scattering by tuning

on and off the resonance energy.

2.2. The resonant electric multipole amplitude

The next task at hand is to separate the resonant amplitude

into the geometric and dynamic factors. We will show this for

the electric 2L-pole resonance (EL) in spherical symmetry

with current operator JðkÞ ¼
P

j pj expðik � rjÞ. The transition

operator exp(ik · rj) can be expanded in a sum over scalar

products of spherical multipole tensors Y ðkÞ� of rank k and

components � = � k, . . . , k as

expðik � rjÞ ¼ 4�
P

k;�

ikjkðqrÞY ðkÞ�� ðk̂ÞY
ðkÞ
� ðr̂jÞ; ð4Þ

where jk(qr) is the kth-order spherical Bessel function.

We will make use of the standard notation for the tensor

product of two spherical tensors A(k) and Bðk
0Þ (Varshalovich et

al., 1988),

½AðkÞ;Bðk
0Þ�
ðKÞ
Q �

P

��0
AðkÞ� B

ðk0Þ

�0 hkk0��0jKQi; ð5Þ

which defines a spherical tensor of rank K and projection Q,

using Clebsch–Gordan coefficients hkk0��0|KQi. Using this

recoupling, the matrix elements for A · pj = (" · pj)exp(ik · rj)

can be written as a sum of products of a geometric and

physical (dynamic) part

hnjAðk; rjÞ � pjjgi /
P

LM

""";YL� 1ðk̂Þ
� �ðLÞ

M
hnjJL

Mjgi; ð6Þ

where the current operator,

JL
M ¼ �

4�iLkL

ð2Lþ 1Þ!!

Lþ 1

L

� �1=2
P

j

erL
j YL

MðrjÞ; ð7Þ

in the physical part excites an electron from an occupied

(core) to an empty (valence) state.

For the electric 2L-pole scattering factor we then obtain the

multipole expansion (Luo et al., 1993; Carra & Thole, 1994)

f ð!ÞEL ¼ 2�
P2L

z¼0

Pz

�¼� z

½T
ðzÞ
� ð"""

0�; k̂
0
; """; k̂Þ; hgjF

ðzÞ
� ð!Þjgi�

ð0Þ
0 ; ð8Þ

with physical part

F
ðzÞ
� ð!Þ ¼

P

n

1

2�

ðJLÞ
y
jnihnjJL

Eg � En þ h- !þ i� =2

 !ðzÞ

�

ð9Þ

and geometric part

T
ðzÞ
� ð"""

0�; k̂
0
; """; k̂Þ ¼

2Lþ 1

Lþ 1
½"""0�;YL� 1ðk̂

0
Þ�

L
; ½""";YL� 1ðk̂Þ�

L
h iz

�
:

ð10Þ

For the electric–dipole resonance the k̂ dependence disap-

pears and equation (8) reduces to

f ð"""0; """; !ÞE1 ¼ 2�
P2

z¼0

Pz

�¼� z

½"""0�; """�
ðzÞ
� ; hgjF

ðzÞ
� ð!Þjgi

h ið0Þ

0
; ð11Þ

containing a scalar F(0), a pseudovector (antisymmetric

tensor) F(1) and a symmetric tensor F(2).

In uniaxial symmetry, with M along the ẑ axis, this leads to

the Hannon & Trammel formula (Hannon et al., 1988)

Fð"""0; """; !ÞSO2
/ """0� � """F ð0Þ � ið"""0� � """Þ � ẑFð1Þ

þ ð"""0� � ẑÞð""" � ẑÞFð2Þ: ð12Þ

F(0) gives the charge scattering f 0c � if 00c . F(1) gives the magnetic

scattering f 0m � if 00m, which depends linearly on the magneti-

zation direction and at resonance can become comparable in

size to F(0). As an example, Figs. 1(b) and 1(c) shows the

charge (f 0c and f 00c ) and magnetic (f 0m and f 00m) scattering at the

Fe L2,3 edge of metallic iron. F(2) is quadratic in the magne-

tization direction and is usually much smaller than F(0) and

F(1). The resonant amplitudes are complex numbers with

strongly energy-dependent phase angles. The real and

imaginary parts are related to each other by a Kramers–

Kronig transform.

The q-dependent scattering intensity is obtained by taking

the modulus square of f("""0, """, !), which gives the charge

scattering, the pure magnetic scattering and the interference

term between charge and magnetic scattering (van der Laan,

2008). For instance, the intensity of the pure magnetic scat-

tering in SO2 symmetry is

Imag ¼
1

2
jF1j

2P�jk̂
0 � M̂j2 þ

1

2
jF1j

2P�½jk̂ � M̂j
2 þ jðk̂0 � k̂Þ � M̂j2�

� jF1j
2 Re½ðP2 þ iP3Þðk̂

0 � M̂�Þðk̂0 � k̂Þ � M̂�; ð13Þ

where P� = P0 + P1, P� = P0 � P1, P2 and P3 represent the

Poincaré–Stokes parameters. The equation can be used to

determine the polarization dependence of the vector magne-

tization profile for magnetic multilayers, domain structures,

nano-objects, spiral and helical structures, skyrmions etc.

(Zhang et al., 2017).

2.3. Diffraction conditions

For a collinear structure with all of the magnetization

vectors parallel, it follows from equation (1) that the polar-

ization dependence of the coherent scattering is the same as

for the single site. This leads to an overlap of the magnetic and

charge peaks; therefore, to study ferromagnetic materials the

interference between these two contributions has to be used,

which shows a change in the scattering signal upon reversal of

the sample magnetization. Antiferromagnetically coupled

layers and domains as well as spiral structures offer the

advantage that the magnetic diffraction peaks are separated

from the structural diffraction peaks. Doubling the periodicity

in real space gives rise to magnetic peaks with half the struc-

tural period in reciprocal space.

The tensorial character of the scattering amplitude allows us

to observe otherwise forbidden reflections, for which the

crystal structure factor vanishes. The diffracted amplitude

generated by the whole crystal is r0

P
j fj expðiq � RjÞ, where j

runs over all sites. Thus, a necessary condition for reflection is

that the total phase factor in the diffracted amplitude does
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not cancel. If all sites have the same f then we have

f
P

j expðiq � RjÞ, which is the result for normal Bragg scat-

tering. This situation changes when the various sites have

different orientations (Carra & Thole, 1994). The components

of the spherical tensor T
ðzÞ
� transform under space rotation

like spherical harmonics with ’ dependence exp(i�’). An

angular rotation of the spherical tensor by 2�/n gives a

phase shift exp(2�i�/n) and thus a scattering factor

f
P

j expð2�i�=nj þ iq � RjÞ. Screw axes and glide planes can

give constructive interference. For instance, when q is along an

n-fold screw axis parallel to c (i.e. with rotation 2�/n and

translation tc/n), the spherical harmonics change by a factor

exp(2�i�/n) and the Bragg factor exp(iq · R) changes by a

phase shift exp(iq · ct/n). Since this factor must reduce to unity,

the reflection is only allowed when q · c/2� = (nk � �)/t, where

k is an integer.

2.4. Crystal-field symmetry

The Hannon and Trammel equation (equation 12), which

has successfully been used in a variety of studies, is restricted

to cylindrical symmetry. It does not include crystal-field

effects, which become important in localized materials such as

oxides. To take these effects into account we have to branch

down to the symmetry states of the excited sites. The tensor

components in crystal-field symmetry can be obtained using

the basis-state transformation jz�i ¼
P

� jz� ihz� jz�i, where

� are the irreps of the point group. However, if M or """ are not

along the symmetry directions of the point group then

the symmetry of the total system reduces to the trivial group

C1.

Alternatively, we can use the Cartesian tensor form. For

instance, in cubic crystal-field symmetry (Oh) the scalar F(0)

has the total symmetric irrep A1 = {1}, the pseudovector F(1)

has the irrep T1 = {x, y, z} and the symmetric tensor F(2) has

the irreps E = {z2 � 1
3

r2, x2 � y2} and T2 = {xy, yz, zx}. Thus, the

diagonal matrix elements contain F
ð0Þ
A1

and F
ð2Þ
E , while the

nondiagonal elements contain F
ð1Þ
T1

and F
ð2Þ
T2

with a corre-

sponding symmetry of the magnetization.

Taking f ð"""0; """; !Þ ¼ """0� � FðM̂; !Þ � """, with unit magnetiza-

tion vector M̂ ¼ ðmx;my;mzÞ = ðsin � cos ’; sin � sin ’; cos �Þ

and polarization vector """ = ("x, "y, "z), the scattering tensor

FðM̂; !ÞOh
along C4 kh001i can be written as (Haverkort et al.,

2010; van der Laan, 2013a)

F
ð0Þ
A1
þ ðm2

x �
1
3
ÞF
ð2Þ
E � mzF

ð1Þ
T1
þmxmyF

ð2Þ
T2

myF
ð1Þ
T1
þmxmzF

ð2Þ
T2

mzF
ð1Þ
T1
þmxmyF

ð2Þ
T2

F
ð0Þ
A1
þ ðm2

y �
1
3
ÞF
ð2Þ
E � mxF

ð1Þ
T1
þmymzF

ð2Þ
T2

� myF
ð1Þ
T1
þmxmzF

ð2Þ
T2

mxF
ð1Þ
T1
þmymzF

ð2Þ
T2

F
ð0Þ
A1
þ ðm2

z �
1
3
ÞF
ð2Þ
E

�
�
�
�
�
�
�

�
�
�
�
�
�
�

:

ð14Þ

To include the third-rank tensor F
ð3Þ
T1

, the elements of which

are usually small, we can append it to the odd-rank tensor F
ð1Þ
T1

by the substitution

miF
ð1Þ
T1
) miF

ð1Þ
T1
þmi m2

i �
3

5

� �

F
ð3Þ
T1

for i ¼ fx; y; zg: ð15Þ

2.5. XAS and XMCD

The absorption cross section is obtained by the optical

theorem as the imaginary part of the scattering amplitude F in

forward direction,

� ¼
4�

jkj
Im½"""� � Fðq ¼ 0; M̂; !Þ � """�: ð16Þ

Thus, the expressions for X-ray absorption are obtained by

taking """0 = """ in those for the scattering amplitude.

As an example, we give here the scattering amplitude for

XMCD in orthorhombic symmetry (D2h). The tensor F(1) has

elements with irreps B1 = {z}, B2 = {y} and B3 = {x}, which gives

a directional dependence of M̂ with respect to the crystal

frame. The Cartesian scattering tensor along C2 kh001i is

F
ð1Þ
D2
ðM̂Þ ¼

0 � mzF
ð1Þ
B1

myF
ð1Þ
B2

mzF
ð1Þ
B1

0 � mxF
ð1Þ
B3

� myF
ð1Þ
B2

mxF
ð1Þ
B3

0

�
�
�
�
�
�
�

�
�
�
�
�
�
�

)

mxF
ð1Þ
B3

myF
ð1Þ
B2

mzF
ð1Þ
B1

0

B
@

1

C
A;

ð17Þ

where in the right-hand side the antisymmetric tensor is

converted by index contraction [
P

jk "
ijkajbk ) ða� bÞi with

Levi–Civita symbol "ijk] into an axial vector. Then,

F
ð1Þ
D2
ðM̂Þ ¼

P
i PimiF

ð1Þ
i , where P = � i("""* � """) is the helicity

vector.

The spin and orbital sum rules for XMCD are treated in van

der Laan (2024) and the angular dependence of XMCD in van

der Laan & Figueroa (2024). XMCD has become a workhorse

technique in physics and materials science with vast applica-

tions, and reviews can be found in, for example, Stöhr &

Siegmann (2006), van der Laan (2013b) and van der Laan &

Figueroa (2014).

2.6. XMLD

For cubic crystal-field symmetry the scattering tensor

Fð2ÞðM̂; !Þ, given in equation (14), has diagonal elements with

irrep E and nondiagonal elements with irrep T2, so that the

XMLD depends on the directions of """ and M̂ with respect to

the crystal frame.

For arbitrary directions of """ and M̂ in cubic crystal-field

symmetry the XMLD is a linear combination of two funda-

mental spectra, which are related to the threefold and fourfold

symmetry axes (Arenholz et al., 2006). In this case, the XMLD

can be separated into an isotropic and an anisotropic part. The

isotropic part is proportional to 2ð""" � M̂Þ2 � 1, which depends

only on the included angle and is therefore rotationally

invariant. The anisotropic part contains the dependence on

the """ and M̂ directions with respect to the crystal axes. It

vanishes in the absence of a crystal field. Notably, there is the

curious case of the Ni2+ L2 edge, where the XMLD only has an

anisotropic part, and the F
ð2Þ
E and F

ð2Þ
T2

spectra have the same

shape but opposite sign. Further details can be found in

Haverkort et al. (2010) and van der Laan (2013a).

In symmetries lower than cubic, there are two distinctly

different ways to obtain the XMLD, i.e., by rotating the

orientation of either the linear polarization or the magneti-
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zation, which give the charge or the magnetic anisotropy,

respectively.

3. Electric and magnetic multipole fields

3.1. Multipole expansion

X-ray optical activity arises from the interference between

different terms in the multipole expansion of the electro-

magnetic field. We will follow the derivation of Rose & Brink

(1967) and van der Laan (2006) and present relevant results.

The Hamiltonian of a single particle in the presence of a

classic electromagnetic field is

H ¼
1

2m
pþ

e

c
AðrÞ

h i2

þ l �HðrÞ þ e’ðrÞ; ð18Þ

where e is the charge and l ¼ g�S ¼ 1
2

g�� is the spin

magnetic moment of the particle, � = eh- /2mc is the Bohr

magneton, A and ’ are the vector and scalar electromagnetic

potential, respectively, and r is the electron position vector. In

the following we will use natural units h- = 1. The gauge

condition is taken such that ’ = 0 and we neglect the two-

photon process given by the A2 term. This leads to a kinetic

energy term H0 ¼ p2=ð2mÞ and an interaction Hamiltonian

comprising a charge and spin term,

Hint ¼ 2gl�A � pþ gs�S � ðrrr �AÞ; ð19Þ

where gl and gs are the orbital and spin g-factors. The aim is to

expand the transverse plane wave A in a series of spherical

vector fields AE
LM and AM

LM , thereby expressing the interaction

Hamiltonian in a series of tensor operators TE
LM and TM

LM ,

which are the products of momentum p and spin S with the

fields AE
LM and AM

LM .

We define the electric and magnetic multipole fields

AM
LM ¼

1

½LðLþ 1Þ�
1=2

L�LM; ð20Þ

AE
LM ¼

1

k
rrr �AM

LM ¼
1

k½LðLþ 1Þ�
1=2
rrr � L�LM; ð21Þ

where the scalar functions

�LM ¼ iLð2Lþ 1ÞjLðkrÞCLMð�; ’Þ; ð22Þ

satisfy the wave equation r2� + k2� = 0 and form a complete

set.

The expansion for circularly polarized vector plane waves

with component q = 1 (right-handed) and q = � 1 (left-handed)

can be written as

A ¼ """q expðik � rÞ

¼ �
1

21=2

P

LM

ðqAM
LM þAE

LMÞD
L
MqðRÞ

¼ �
1

21=2

P

LM�

q�A�
LMD

L
MqðRÞ; ð23Þ

where DL
MqðRÞ is the rotation matrix that takes the z axis into

the direction of the vector k, and the index � in the compact

expression runs over E (� = 0) and M (� = 1). The polarization

vectors are defined as """�1 = �("x + i"y)/(2)1/2 and "0 = "z are

co(ntra)variant components: "�q ¼ "
q ¼ ð� Þq"� q.

In the long-wavelength approximation, kr � 1, the sphe-

rical Bessel functions obtain the approximate value jL(kr) �

(kr)L/(2L + 1)!!, so that the scalar potential �LM takes the

simplified form �LM = rLCLM(ik)L/(2L � 1)!!. This gives for

the interaction Hamiltonian

Hint ¼ �
1

21=2

P

LM�

DL
MqðRÞ½2gl�q�A�

LM � pþ gs�q�S � ðrrr �A�
LMÞ�:

ð24Þ

The charge and spin interactions of the electric and magnetic

multipole fields result in a total of four terms in the interaction

Hamiltonian,

Hint ¼ �
P

LM

ðikÞ
L

ð2L � 1Þ!!

Lþ 1

2L

� �1=2

� DL
MqðRÞ½QLM þQ0LM � iqðMLM þM0LMÞ�; ð25Þ

with the electric (Q) and magnetic (M) multipole operators

QLM ¼ eglðr
LCLMÞ ¼ � 2gl�ði=kÞrðrLCLMÞ � p;

MLM ¼ 2�glrðr
LCLMÞ � L=ðLþ 1Þ;

Q0LM ¼ � k�gsLðr
LCLMÞ � S=ðLþ 1Þ;

M0LM ¼ �gsrðr
LCLMÞ � S; ð26Þ

where the unprimed and primed operators result from the

charge and spin interactions, respectively. The Hamiltonian

can be cast in a simplified form using the interaction multipole

operators T�
LM , with � = 0 for E and � = 1 for M, which are sets

of operators all having the same transformation properties,

Hint ¼ �
P

LM�D
L
MqðRÞq

�T�
LM;

TE
LM ¼ �

E
LðQLM þQ0LMÞ;

TM
LM ¼ �

E
MðMLM þM0LMÞ;

�E
L ¼

ðikÞ
L

ð2L � 1Þ!!

Lþ 1

2L

� �1=2

and �M
L ¼ � i�E

L: ð27Þ

Specifically, for the prefactor we have �E
1 ¼ ik, �M

1 ¼ k and

�E
2 ¼ � k2=2ð3Þ1=2. We have the parity rules P�LM =

(� )L�LM, PAE
LM ¼ ð� Þ

LAE
LM and PAM

LM ¼ ð� Þ
LAM

LM . The

parity of AE · p and S · (rrr �AE) is (� )L, whereas the parity of

AM · p and S · (rrr � AM) is (� )L+1. Therefore, the electric and

magnetic 2L-pole interaction operators T�
LM connect states

that differ in parity by a factor (� )L+�. Thus E1 has odd parity,

while M1 and E2 have even parity.

Using the expansion for the exponential

expðik � rÞ ¼ 1þ ik � r �
1

2
ðk � rÞ

2
þ � � � ; ð28Þ

we can separate A · p = ð""" � pÞ expðik � rÞ into the geometric

and dynamic factors given in Table 1, using the tensor product

notation defined in equation (5). The prefactor �E;M
L is given in

equation (27). The different orders n in the expansion are

alternatingly imaginary and real. The parity operator gives

P(i, """, k, p, r) = (i, � """, � k, � p, � r). The time-reversal

operator gives �(i, """, k, p, r) = (� i, """*, � k, � p, r), hence the
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part iL+1kLp of the interaction operator T�
LM is always time-

reversal even.

The zeroth-order contribution (n = 0) gives the E1 term " · p

/ i!""" · r. The geometric factor """ is parity-odd.

The first-order contribution (n = 1) can be factorized into a

geometric factor [""", k](L) and a dynamic factor [p, r](L), which

are both parity-even. For L = 0, the geometric factor vanishes

due to transversality, i.e. """ · k = 0. The L = 1 term gives the

magnetic dipole contribution (M1) with a geometric factor

[""", k](1) / (k� """) and a dynamic factor [p, r](1)/ (p� r)/ L.

The L = 2 term yields the electric quadrupole contribution

(E2) with a dynamic factor [p, r](2) / L2 / the charge quad-

rupole.

Thus, the leading terms in the transition amplitude can be

written as

hfjA � pjii ¼ �
m

h-
ðEf � EiÞ hfj""" � rjii þ

i

2
hfjð""" � rÞðk � rÞjii

� �

� hfjðk� """Þ � ðLþ gSÞjii; ð29Þ

where the first, second and third terms represent the electric

dipole (E1), electric quadrupole (E2) and magnetic dipole

(M1) transition amplitudes, respectively. The transition prob-

ability of E1 is much larger than those of E2 and M1. The M1

operator, with the monopole selection rules �J � 1, �L = 0,

�S = 0 and �n = 0, does not contain a radial variable;

therefore, its matrix element vanishes if the radial parts of the

initial and final states are orthogonal. The M1 transition

occurs only at low excitation energies and can be neglected in

core-level spectroscopy, since it requires configuration inter-

action. The explicit angular dependence of the E1 and E2

transitions can be found in Brouder (1990).

According to Fermi’s golden rule in quantum mechanics,

the absorption cross section �(!) is given by the matrix

element product of the interaction between the initial and the

final state, summed over final states with the same energy,

�ð!Þ ¼
4�2h- �

m2!

P

f

hijH�intjfihfjHintjii�ðEf � Ei � h- !Þ; ð30Þ

which contains interference terms such as E1M1 and E1E2.

3.2. Symmetry of multipole transitions

The ELEL0 absorption cross section can be written as

�ELEL0 ¼
PLþL0

b¼jL� L0 j

Pb

�¼� b

ð� Þ
� P

�¼0;1

T
ðb;�Þ
� �

ðb;�Þ
� � ; ð31Þ

where the tensors T
ðb;�Þ
� and r

ðb;�Þ
� � give the geometric and

dynamic factor, respectively, of rank b and time-reversal phase

factor (� )�. For the squared matrix elements in equation (30)

the geometric factor (c.f. Table 1)

T
ðb;�Þ
� ¼ ½"""�; kðL� 1Þ�

ðLÞ
; ½"""; kðL

0 � 1Þ�
ðL0Þ

h iðb;�Þ

�
ð32Þ

with parity condition ð� Þ� ¼ ð� ÞLþL0 . The time-reversal

symmetry can be even (� = 0) or odd (� = 1). As T
ðb;�Þ
� in

equation (32) does not have a well defined behaviour under

time reversal, we recouple it to the form

X
ðb;�Þ
� ¼ ½"""�; """�

ðaÞ
; kðNÞ

� �ðb;�Þ
�
; ð33Þ

where N = L + L0 � 2 is the number of times that k appears in

the geometric factor. The tensor X has the triangle condition,

|N � a| � b � N + a. The parity condition is (� )� = (� )N. The

time-reversal condition is

ð� Þ
�
¼ ð� Þ

aþN
¼ ð� Þ

aþ�
: ð34Þ

For a = 0, we have """* · """ = 1 and the geometric factor k(N) is

polarization-independent, so that we obtain (� )� = (� )b =

(� )N = (� )�. Thus, these indices must be either all even or all

odd. An even value corresponds to the normal spectrum, while

an odd value corresponds to the XM�D.

For a = 1, we have ("""* � """) / ik. This gives a chiral effect,

defined as one in which the intensity contribution is reversed

by conjugating the polarization vectors (Stedman, 1990). Since

k � k(N) = 0 we have b = N � 1, and using (� )� = (� )N+1 we

obtain b + � is even. Equation (34) leads to two different

possibilities for the chiral effect. The first is � = 0 and � = 1,

which gives magnetic circular dichroism (MCD) with b odd

and N even. The second possibility is � = 1 and � = 0, which

gives the natural circular dichroism (NCD) with b even and N

odd (c.f. Table 2).

For a = 2 we have (� )� = (� )� = (� )N, while b can have

different values. b = 1 contributes to the XM�D and b = 2 and

b = 3 contribute to the XMLD.

In the case that L = L0, the parity is even so that (� )� = (� )a,

hence � is even and odd for even and odd a, respectively. In

the special case N = 0 (i.e. E1E1) we have T(b, �) = ["""*, """](a),

hence a = b. For the isotropic spectrum (a = 0) the sum rule

gives the number of particles n (Thole & van der Laan, 1988).

For the X-ray magnetic circular dichroism (XMCD; a = 1) the
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Table 2
The different optical effects.

The phase factors for parity (� )� and time reversal (� )� with corresponding
multipole transitions. Pure and interference terms of the radiation–matter

interaction are parity even and odd, respectively. M means sample magneti-
zation (time-reversal odd). The corresponding spectra are the X-ray magnetic
linear dichroism (XMLD), X-ray magnetic circular dichroism (XMCD), X-ray
natural linear dichroism (XMLD) and nonreciprocal linear dichroism
(NRLD).

Parity Transition Optical effect Spectra

+1 +1 E1E1 + E2E2 XAS, XMLD
+1 � 1 (E1E1 + E2E2)M XMCD
� 1 +1 E1M1 + E1E2 XNCD
� 1 � 1 (E1M1 + E1E2)M NRLD, XM�D

Table 1
The nth-order geometric and dynamic factors in the (""" · p)exp(ik · r)
expansion giving the different electric and magnetic multipole terms with
rank L (n is the number of times that k appears).

The indicated parity is the same for the geometric and dynamic factor.

n Term Geometric factor Dynamic factor Parity

0 E1 """(1) p � 1
1 M1 [""", k](1) [p, r](1) +1

E2 [""", k](2) [p, r](2) +1
L ML [""", k(L)](L) [p, k(L)](L) (� )L+1

E(L + 1) [""", k(L)](L+1) [p, k(L)](L+1) (� )L+1



sum rule gives the orbital moment L (Thole et al., 1992). For

the X-ray magnetic linear dichroism (XMLD; a = 2) the sum

rule gives the quadrupole moment Q / L2 (Carra et al., 1993;

van der Laan, 1999).

All interference terms have N odd, so that (� )� = (� )a+1, i.e.

� + a is odd, hence � is even and odd for odd and even a,

respectively.

The effective operators which form the sum-rule results can

be built from the triad of mutually orthogonal vector opera-

tors (Goulon et al., 2003; Carra et al., 2003): n = r/r, which is a

time-even, polar vector, typically associated with the electric

dipole moment, the orbital angular momentum L, which is a

time-odd, axial vector, and the toroidal vector X = 1
2
[(n� L) �

(L� n)] = 1
2
i[n, L2], which is odd with respect to both inversion

and time reversal and is proportional to the orbital anapole

moment.

The E1E2 interference has a geometric factor T
ðb;�Þ
� =

½"""�; ½"""; k�ð2Þ�
ðb;�Þ
� and the multipole selection rules impose a

mixing (hybridization) between l and l + 1 valence levels. The

following results have been reported (Goulon et al., 2003;

Carra et al., 2003).

The X-ray magnetochiral dichroism (XM�D) sum rule

involves the ground-state expectation value of the toroidal

vector X(1,�=1) with a geometric factor T
ð1;�¼1Þ
0 ¼ � 1

2
3
5

� �1=2
k,

associated with the Stokes component S0.

The XNCD sum rule gives the expectation value of the

time-even pseudodeviator N(2,�=0) = [L, X](2) and T(2,�=0) =
1
2
ð3Þ1=2½½"""�; """�ð1Þ; k�

ð2Þ
0 .

For the nonreciprocal XMLD the effective operator must

be a time-odd pseudodeviator W
ð2;�¼1Þ
�2 ¼ ½L; n�ð2Þ and

T
ð2;�¼1Þ
�2 ¼ 1

2
½½"""�; """�; k�

ð3Þ
�2.

An effective operator � (3,�=1) = [[L, L](2), X](3) is involved

in the sum rules for both XM�D and nonreciprocal XMLD.

3.3. X-ray optical activity

The results in Section 3.2 permit a simple physical

description of the optical effects. Pure transitions must have

even parity. The only way of inducing natural (field-indepen-

dent) optical activity is by interference between multipoles of

different order in the k-expansion of the photon wavevector.

Only the interference of a real and an imaginary term T�
LM can

lead to odd parity. The E1M1 interference in the visible region

allows the detection of natural circular dichroism and optical

rotation, such as in the well known example of a sugar solu-

tion. Although in the visible region the E2 transitions are

negligibly small, their magnitude increases with photon

energy, so that for harder X-rays the E1E2 interference can be

observed. We can distinguish the different optical effects by

their properties under space inversion and time reversal, as

given in Table 2.

As a general rule, dichroism can only exist if there is no

symmetry that reverses only one measurable observable but

leaves the rest of the system unchanged. In the Faraday effect

the time-reversal operator reverses both the magnetization

and the direction of the light, thereby leaving the total physical

system invariant. In natural circular dichroism, the parity

operator reverses the rotation angle (screw sense) of both the

medium and the light, again leaving the total system invariant.

Nonzero effects only show up in crystals that have the

appropriate symmetry class. Nonreciprocal optical effects

invoke magnetic moments, since they are time non-invariant.

They are characterized by a reversal of the phase rotation

when the light propagates in the opposite direction, such as in

the Faraday rotation in transmission or the Kerr effect in

reflection. Magnetic circular dichroism (MCD), the difference

in absorption for left- and right-circularly polarized light in the

presence of an external magnetic field, also belongs to this

category. Nonreciprocal optical effects are not restricted to

media that possess a net magnetic moment, such as ferro-

magnets and ferrimagnets. Magnetoelectric antiferromagnets

belong to the special class of magnetic ordered materials

where there is no net magnetic moment but, in addition to

time reversal, the parity symmetry is also broken, while the

combined symmetry operation is conserved. Goulon et al.

(2000) reported a nonreciprocal transverse anisotropy in the

low-temperature antiferromagnetic insulating phase of a

chromium-doped V2O3 crystal in which one single antiferro-

magnetic domain was grown by magnetoelectric annealing.

3.4. A group-theoretical viewpoint

Here, we show how to distinguish experimentally between

the different optical effects. Reversing the photon helicity

vector � and the magnetization M gives the spectra shown in

Table 3, where the superscripts + and � indicate an alignment

along the positive and negative direction. These spectra are

symmetric (even) or antisymmetric (odd) in � and M. Note the

difference between this table, where the parity comes from the

helicity vector, and Table 2, where even and odd parity is

connected to pure and mixed multipole transitions, respec-

tively.

By symmetry, the different spectra correspond to the irre-

ducible representations of the point group D2 = C2 � C2, for

which the character table is shown in Table 4. Even and odd

functions are indicated by 1 and � 1, respectively.
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Table 3
Linear combinations of spectra with reversing helicity vector � and
magnetization M.

Spectra Linear combinations

Sum �+M+ + �+M� + �� M+ + �� M� = (�+ + �� )(M+ + M� )
XNCD �+M+ + �+M� � �� M+ � �� M� = (�+ � �� )(M+ + M� )

XM�D �+M+ � �+M� + �� M+ � �� M� = (�+ + �� )(M+ � M� )
XMCD �+M+ � �+M� � �� M+ + �� M� = (�+ � �� )(M+ � M� )

Table 4
Character table for the point group D2 = C2 � C2.

Invariance or reversal with respect to {�, M} is indicated by 1 and � 1,
respectively. E is the identity operator. The irreducible representations, with

irrep labels A1 and Bn, correspond to the various spectra. Also note that � is
time-even and parity-odd, while M is time-odd and parity-even.

E M � M � � Spectrum

A1 1 1 1 1 XAS

B1 1 1 � 1 � 1 XNCD
B2 1 � 1 1 � 1 XM�D
B3 1 � 1 � 1 1 XMCD



Table 4 shows that the XMCD is the difference between

spectra with M and � parallel and antiparallel, respectively.

Therefore, it is odd in both � and M, but even in M � �. The

XNCD is the difference between spectra with opposite � and

is independent of M. The XM�D is the difference between

spectra with opposite M and is independent of �; hence, it can

be measured using linear polarization.
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