your search
 Results for by Wondratschek, H.
Space groups and their description
Wondratschek, H., International Tables for Crystallography (2011). Vol. A1, Section 1.2.5.1, p. [ doi:10.1107/97809553602060000791 ]
for any finite integer n : Definition 1.2.5.1.1.  A group of isometries in n -dimensional space is called an n -dimensional space group if (1) contains n linearly independent translations. (2 ...

Classifications of space groups
Wondratschek, H., International Tables for Crystallography (2011). Vol. A1, Section 1.2.5.2, p. [ doi:10.1107/97809553602060000791 ]
'. This classification is done in two ways (cf. Sections 1.2.5.4 and 1.2.5.5): (1) first into geometric crystal classes by the point group of the space group, and then into crystal systems ; (2) into the arithmetic ...

Point groups and crystal classes
Wondratschek, H., International Tables for Crystallography (2011). Vol. A1, Section 1.2.5.4, p. [ doi:10.1107/97809553602060000791 ]
is isomorphic to the factor group, i.e. to the group of the cosets. Definition 1.2.5.4.1.  A group of linear parts, represented by a group of matrices, is called a point group . If the linear parts are those of the matrix–column ...

Crystal systems and crystal families
Wondratschek, H., International Tables for Crystallography (2011). Vol. A1, Section 1.2.5.5, p. [ doi:10.1107/97809553602060000791 ]
Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. & Zassenhaus, H. (1978). Crystallographic Groups of Four-dimensional Space . New York: John Wiley & Sons. Google Scholar International Tables for Crystallography (2011). Vol. A1 ...

Space groups and space-group types
Wondratschek, H., International Tables for Crystallography (2011). Vol. A1, Section 1.2.5.3, p. [ doi:10.1107/97809553602060000791 ]
to that space-group type which is described in this set. From those diagrams the Hermann–Mauguin symbol, abbreviated as HM symbol, the Schoenflies symbol and the space-group number are taken. A rigorous definition is: Definition 1.2.5.3.1.  Two ...

Space groups
Wondratschek, H., International Tables for Crystallography (2011). Vol. A1, Section 1.2.5, p. [ doi:10.1107/97809553602060000791 ]
groups. Lattices, their Bravais types and lattice systems can also be classified into crystal families of lattices; cf. IT A, Chapter 8.2 . References Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. & Zassenhaus, H ...

powered by swish-e
























































to end of page
to top of page