your search
 Results for by van Smaalen, S.
Stopping criterion
Magdysyuk, O.V., van Smaalen, S. and Dinnebier, R.E., International Tables for Crystallography (2019). Vol. H, Section 4.8.8.2, p. [ doi:10.1107/97809553602060000963 ]
the atoms. This procedure has worked well for several data sets. It could be shown that the optimal value of is related to the goodness of fit (GoF) of a multipole refinement using the same data by the relation = 0.68 × GoF (van Smaalen & Netzel, 2009 ...

Extensions of the MEM
Magdysyuk, O.V., van Smaalen, S. and Dinnebier, R.E., International Tables for Crystallography (2019). Vol. H, Section 4.8.8, p. [ doi:10.1107/97809553602060000963 ]
distribution. Several tests on selected examples showed that a generalized F constraint with n = 4 may lead to an improved distribution of residuals (Palatinus & van Smaalen, 2002). 4.8.8.2. Stopping criterion | top | pdf ...

Distribution of normalized residuals of the structure factors
Magdysyuk, O.V., van Smaalen, S. and Dinnebier, R.E., International Tables for Crystallography (2019). Vol. H, Section 4.8.8.1, p. [ doi:10.1107/97809553602060000963 ]
& van Smaalen, 2002) that the distribution of the normalized residuals of the structure factors can deviate strongly from the Gaussian distribution. A few reflections (usually strong reflections at low angles) possess residuals of very large ...

Generalization of MaxEnt algorithm to n dimensions (n > 3) and application to powder-diffraction data of aperiodic structures
Magdysyuk, O.V., van Smaalen, S. and Dinnebier, R.E., International Tables for Crystallography (2019). Vol. H, Section 4.8.8.3, p. [ doi:10.1107/97809553602060000963 ]
(Papoular et al., 1991 ; Steurer, 1991 ; Weber & Yamamoto, 1997 ; van Smaalen et al., 2003 ; Palatinus & van Smaalen, 2004 ; Li et al., 2011). Crystal structures of aperiodic crystals are described as periodic structures in (3 ...

powered by swish-e
























































to end of page
to top of page