modify your search
 Results for DC.creator="D." AND DC.creator="Chateigner" in section 5.3.5 of volume H   page 1 of 2 pages.
Combined analysis: structure, texture, microstructure, stress, phase, layering and reflectivity analyses in a single approach
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5, pp. 571-578 [ doi:10.1107/97809553602060000968 ]
... Since then, the methodology has been used for various purposes (Chateigner et al., 1998 ; Lutterotti et al., 2002 , 2004 ; Morales et ... crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223-228.GoogleScholar Chateigner, D., Lutterotti, L. & Hansen, T. (1998). Quantitative phase and ...

Implementation
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.5, p. 577 [ doi:10.1107/97809553602060000968 ]
... Powder Diffraction File. Powder Diffr. 32, 63-77.GoogleScholar Grazulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M. ... Phys. Res. B, 268, 334-340.GoogleScholar Pepponi, G., Grazulis, S. & Chateigner, D. (2012). MPOD: a Material Property Open Database ...

Absorption and layers
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.8, pp. 576-577 [ doi:10.1107/97809553602060000968 ]
... in Rietveld refinement. J. Appl. Cryst. 31, 176-180.GoogleScholar Simek, D., Kuzel, R. & Rafaja, D. (2006). Reciprocal-space mapping for simultaneous determination of texture ... Necker, C. T., Roberts, J. A., Lawson, A. C., Williams, D. J., Daemen, L. L., Lutterotti, L. & Pehl, J. (2006) ...

Residual strains/stresses and evaluation of macroscopic tensors
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.7, pp. 575-576 [ doi:10.1107/97809553602060000968 ]
... Sci. Forum, 157-162, 1641-1646.GoogleScholar Popa, N. C. & Balzar, D. (2001). Elastic strain and stress determination by Rietveld refinement ... 1928). Lehrbuch der Kristallphysik. Leipzig: Teubner Verlag.GoogleScholar Wang, Y. D., Peng, R. L., Zeng, X. H. & McGreevy, R. (2000). ... determination. Mater. Sci. Forum, 347-349, 66-73.GoogleScholar Wang, Y. D., Wang, X.-L., Stoica, A. D., Richardson, J. W. & ...

Texture computation
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.6, p. 575 [ doi:10.1107/97809553602060000968 ]
Texture computation 5.3.5.4.6. Texture computation The texture factors in (5.3.63 ) can be computed using one of the methods reported in Section 5.3.4 for Rietveld analysis, but only those associated with an OD computation, i.e. all but the empirical methods such as the March-Dollase and Donnet-Jouanneaux methods. To ensure a ...

Line profiles and sample broadening
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.5, p. 575 [ doi:10.1107/97809553602060000968 ]
... J. Appl. Cryst. 31, 176-180.GoogleScholar Popa, N. C. & Balzar, D. (2002). An analytical approximation for a size-broadened profile ... J. Appl. Cryst. 35, 338-346.GoogleScholar Popa, N. C. & Balzar, D. (2008). Size-broadening anisotropy in whole powder pattern fitting. ...

Reflection intensities
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.4, pp. 574-575 [ doi:10.1107/97809553602060000968 ]
Reflection intensities 5.3.5.4.4. Reflection intensities Reflection intensities, as appearing in (5.3.63 ), depend mainly on the structure factors described elsewhere in this volume. Three different approaches are used to calculate them in the combined-analysis scheme. The first approach calculates the structure factors from the atomic model with knowledge of the types ...

Background fitting
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.3, pp. 573-574 [ doi:10.1107/97809553602060000968 ]
Background fitting 5.3.5.4.3. Background fitting Furthermore, depending on many factors such as sample shape and absorption, the background B can also vary with the various angles of rotation. These variations have to be modelled, which is usually accomplished through a polynomial fit on all rotation axes, or more complex functions such ...

Peak-displacement errors
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.2, p. 573 [ doi:10.1107/97809553602060000968 ]
Peak-displacement errors 5.3.5.4.2. Peak-displacement errors Peak shifts arise from the misalignment of one or several of the rotation axes or sample displacement from the rotation centre. For instance, in Fig. 5.3.20 we clearly observe a 2[theta] peak shift for large [chi] values and this shift would not be ...

Instrumental broadening calibration
Chateigner, D., Lutterotti, L. and Morales, M.  International Tables for Crystallography (2019). Vol. H, Section 5.3.5.4.1, pp. 572-573 [ doi:10.1107/97809553602060000968 ]
Instrumental broadening calibration 5.3.5.4.1. Instrumental broadening calibration The spectrometer space is multidimensional, with each rotation axis possibly giving rise to defocusing or misalignment effects. Each of these aberrations has to be measured and corrected for. For instance, in dealing with goniometer misalignments (which should be minimized as much as possible by ...

Page: 1 2 Next powered by swish-e
























































to end of page
to top of page