modify your search
Results for DC.creator="V." AND DC.creator="M." AND DC.creator="Dadarlat" in section 20.2.3 of volume F |
Experimental restraints in the energy function
International Tables for Crystallography (2012). Vol. F, Section 20.2.3.3, pp. 643-644 [ doi:10.1107/97809553602060000878 ]
Experimental restraints in the energy function 20.2.3.3. Experimental restraints in the energy function For the purpose of structure determination, the potential-energy function used for molecular-dynamics calculation incorporates the information from experimental data in the form of non-physical restraint terms. These restraint terms, introduced to bias the conformational sampling ...
Particle mesh Ewald
International Tables for Crystallography (2012). Vol. F, Section 20.2.3.2, p. 643 [ doi:10.1107/97809553602060000878 ]
... zero as increases. The term is the reciprocal Ewald sum: V is the volume and m is a vector in the reciprocal space. The Ewald sum ... Chem. Phys. 98, 10089-10092. Essmann, U., Perrera, L., Berkovitz, M. L., Darden, T., Lee, H. & Pedersen, L. G. (1995) ...
Empirical energy
International Tables for Crystallography (2012). Vol. F, Section 20.2.3.1, pp. 642-643 [ doi:10.1107/97809553602060000878 ]
Empirical energy 20.2.3.1. Empirical energy The central element of simulations is the interaction potential between atoms as a function of atomic position, r. The success of simulations in describing the average structure of proteins and other biological features suggests that such relatively simple potential functions adequately represent proteins and nucleic acids. ...
Potential-energy function
International Tables for Crystallography (2012). Vol. F, Section 20.2.3, pp. 642-644 [ doi:10.1107/97809553602060000878 ]
... zero as increases. The term is the reciprocal Ewald sum: V is the volume and m is a vector in the reciprocal space. The Ewald sum ... Chem. Phys. 98, 10089-10092. Essmann, U., Perrera, L., Berkovitz, M. L., Darden, T., Lee, H. & Pedersen, L. G. (1995) ...
International Tables for Crystallography (2012). Vol. F, Section 20.2.3.3, pp. 643-644 [ doi:10.1107/97809553602060000878 ]
Experimental restraints in the energy function 20.2.3.3. Experimental restraints in the energy function For the purpose of structure determination, the potential-energy function used for molecular-dynamics calculation incorporates the information from experimental data in the form of non-physical restraint terms. These restraint terms, introduced to bias the conformational sampling ...
Particle mesh Ewald
International Tables for Crystallography (2012). Vol. F, Section 20.2.3.2, p. 643 [ doi:10.1107/97809553602060000878 ]
... zero as increases. The term is the reciprocal Ewald sum: V is the volume and m is a vector in the reciprocal space. The Ewald sum ... Chem. Phys. 98, 10089-10092. Essmann, U., Perrera, L., Berkovitz, M. L., Darden, T., Lee, H. & Pedersen, L. G. (1995) ...
Empirical energy
International Tables for Crystallography (2012). Vol. F, Section 20.2.3.1, pp. 642-643 [ doi:10.1107/97809553602060000878 ]
Empirical energy 20.2.3.1. Empirical energy The central element of simulations is the interaction potential between atoms as a function of atomic position, r. The success of simulations in describing the average structure of proteins and other biological features suggests that such relatively simple potential functions adequately represent proteins and nucleic acids. ...
Potential-energy function
International Tables for Crystallography (2012). Vol. F, Section 20.2.3, pp. 642-644 [ doi:10.1107/97809553602060000878 ]
... zero as increases. The term is the reciprocal Ewald sum: V is the volume and m is a vector in the reciprocal space. The Ewald sum ... Chem. Phys. 98, 10089-10092. Essmann, U., Perrera, L., Berkovitz, M. L., Darden, T., Lee, H. & Pedersen, L. G. (1995) ...
powered by |