International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 13.1, p. 836

Section 13.1.1. Definitions

Y. Billieta and E. F. Bertautb§

a Département de Chimie, Faculté des Sciences et Techniques, Université de Bretagne Occidentale, Brest, France, and bLaboratoire de Cristallographie, CNRS, Grenoble, France

13.1.1. Definitions

| top | pdf |

A subgroup [{\cal H}] of a space group [{\cal G}] is an isomorphic subgroup if [{\cal H}] is of the same or the enantiomorphic space-group type as [{\cal G}]. Thus, isomorphic space groups are a special subset of klassengleiche subgroups. The maximal isomorphic subgroups of lowest index are listed under IIc in the space-group tables of this volume (Part 7[link] ) (cf. Section 2.2.15[link] ). Isomorphic subgroups can easily be recognized because the standard space-group symbols of [{\cal G}] and [{\cal H}] are the same [isosymbolic subgroups (Billiet, 1973[link])] or the symbol of [{\cal H}] is enantiomorphic to that of [{\cal G}]. Every space group has an infinite number of maximal isomorphic subgroups, whereas the number of maximal non-isomorphic subgroups is finite (cf. Section 8.3.3[link] ). For this reason, isomorphic subgroups are discussed in more detail in the present section.

If a, b, c are the basis vectors defining the conventional unit cell of [{\cal G}] and [{\bf a}',{\bf b}',{\bf c}'] the basis vectors corresponding to [{\cal H}] the relation [({\bf a}',{\bf b}',{\bf c}') = ({\bf a},{\bf b},{\bf c}){\bi S} \eqno(13.1.1.1)] holds, where (a, b, c) and [({\bf a}',{\bf b}',{\bf c}')] are row matrices and S is a [(3 \times 3)] matrix. The coefficients [S_{ij}] of S are integers.1

The index of [{\cal H}] in [{\cal G}] is equal to [|\det ({\bi S})|]1, which is the ratio of the volumes [[{\bf a}'{\bf b}'{\bf c}']] and [abc] of the two cells. [\det ({\bi S})] is positive if the bases of the two cells have the same handedness and negative if they have opposite handedness.

If O and O′ are the origins of the coordinate systems (O, a, b, c) and [(O',{\bf a}',{\bf b}',{\bf c}')], used for the description of [{\cal G}] and [{\cal H}], the column matrix of the coordinates of O′ referred to the system (O, a, b, c) will be denoted by s. Thus, the coordinate system [(O',{\bf a}',{\bf b}',{\bf c}')] will be specified completely by the square matrix S and the column matrix s, symbolized by [\specialfonts{\bbsf S}: ({\bi S}, {\bi s})].

An example of the application of equation (13.1.1.1)[link] is given at the end of this chapter.

13.1.1.1. The mathematical expression of equivalence

| top | pdf |

Let [\specialfonts{\bbsf W} = ({\bi W}, {\bi w})] be the operator of a given symmetry operation of [{\cal H}] referred to (O, a, b, c) and [\specialfonts{\bbsf W}' = ({\bi W}', {\bi w}')] the operator of the same operation referred to [(O',{\bf a}',{\bf b}',{\bf c})]. Then the following relation applies [\specialfonts{\bbsf S}{\bbsf W}' = {\bbsf W}{\bbsf S}\quad\rm \hbox{or}\quad {\bbsf W}' = {\bbsf S} ^{\rm -1}{\bbsf W}{\bbsf S} \eqno(13.1.1.2)] (cf. Bertaut & Billiet, 1979[link]). The latter expression is more conventional, the former is easier to manipulate. Identifying the rotational (matrix) and translational (column) parts of [\specialfonts{\bbsf W}], one obtains the following two conditions: [\eqalign{{\bi S}{\bi W}' &= {\bi W}{\bi S},\cr {\bi s} + {\bi S}{\bi w}' = {\bi w} + {\bi W}{\bi s} &= \hat{{\bi w}} + {\bi t}_{\cal G} + {\bi W}{\bi s}} \eqno(13.1.1.2{a})] or [{\bi S}{\bi w}' - \hat{{\bi w}} + ({\bi I} - {\bi W}){\bi s} = {\bi t}_{\cal G}. \eqno(13.1.1.2b)]

Here we have split w into a fractional part [\hat{{\bi w}}] (smaller than any lattice translation) and [{\bi t}_{\cal G}] which describes a lattice translation in [{\cal G}].

The general expression of the matrix S is [{\bi S} = \pmatrix{S_{11} &S_{12} &S_{13}\cr S_{21} &S_{22} &S_{23}\cr S_{31} &S_{32} &S_{33}\cr}. \eqno(13.1.1.3)] This general form, without any restrictions on the coefficients, applies only to the triclinic space groups P1 and [P\bar{1}]; P1 has only isomorphic subgroups (cf. Billiet, 1979[link]; Billiet & Rolley Le Coz, 1980[link]). For other space groups, restrictions have to be imposed on the coefficients [S_{ij}].

References

First citation Bertaut, E. F. & Billiet, Y. (1979). On equivalent subgroups and supergroups of the space groups. Acta Cryst. A35, 733–745.Google Scholar
First citation Billiet, Y. (1973). Les sous-groupes isosymboliques des groupes spatiaux. Bull. Soc. Fr. Minéral. Cristallogr. 96, 327–334.Google Scholar
First citation Billiet, Y. (1979). Le groupe P1 et ses sous-groupes. I. Outillage mathématique: automorphisme et factorisation matricielle. Acta Cryst. A35, 485–496.Google Scholar
First citation Billiet, Y. & Rolley Le Coz, M. (1980). Le groupe P1 et ses sous-groupes. II. Tables de sous-groupes. Acta Cryst. A36, 242–248.Google Scholar








































to end of page
to top of page