International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 3.1, pp. 45-46

Section 3.1.4. Deduction of possible space groups

A. Looijenga-Vosa and M. J. Buergerb§

a Laboratorium voor Chemische Fysica, Rijksuniversiteit Groningen, The Netherlands, and bDepartment of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

3.1.4. Deduction of possible space groups

| top | pdf |

Reflection conditions, diffraction symbols, and possible space groups are listed in Table 3.1.4.1[link]. For each crystal system, a different table is provided. The monoclinic system contains different entries for the settings with b, c and a unique. For monoclinic and orthorhombic crystals, all possible settings and cell choices are treated. In contradistinction to Table 4.3.2.1[link] , which lists the space-group symbols for different settings and cell choices in a systematic way, the present table is designed with the aim to make space-group determination as easy as possible.

Table 3.1.4.1| top | pdf |
Reflection conditions, diffraction symbols and possible space groups

TRICLINIC. Laue class [\bar{1}]

Reflection conditionsExtinction symbolPoint group
1[\bar{1}]
NoneP[P1(1)][P\bar{1}\;(2)]

MONOCLINIC, Laue class [2/m]

Unique axis bExtinction symbolLaue class [1\;2/m\;1]
Reflection conditionsPoint group
hkl
0kl hk0
h0l
h00 00l
0k02m[2/m]
   P1–1P121 (3)P1m1 (6)[{\bi P} {\bf 1\;2/}{\bi m}{\hbox to 2pt{}}{\bf 1}\;(10)]
  k[P12_{1}1][{\bi P}{\bf 12}_{\bf 1}{\bf 1}\;(4)] [{\bi P}{\bf 1\;2}_{\bf 1}/{\bi m}{\hbox to 2pt{}}{\bf 1}\;(11)]
 h P1a1 P1a1 (7)[P1\;2/a\;1\;(13)]
 hk[P1\;2_{1}/a\;1]  [P1\;2_{1}/a\;1\;(14)]
 l P1c1 P1c1 (7)[{\bi P}{\bf 1\;2}/{\bi c}{\bf \;1}\;(13)]
 lk[P1\;2_{1}/c\;1]  [{\bi P}{\bf 1} {\bf \;2}_{\bf 1}/{\bi c}{\bf \;1}\;(14)]
 [h + l] P1n1 P1n1 (7)[P1\;2/n\;1\;(13)]
 [h + l]k[P1\;2_{1}/n\;1]  [P1\;2_{1}/n\;1\;(14)]
[h + k]hkC1–1C121 (5)C1m1 (8)[{\bi C}{\bf 1\;2}/{\bi m}{\bf \;1}\;(12)]
[h + k]h, lkC1c1 C1c1 (9)[{\bi C}{\bf 1\;2}/{\bi c}{\bf \;1}\;(15)]
[k + l]lkA1–1A121 (5)A1m1 (8)[A1\; 2/m\; 1\;(12)]
[k + l]h, lkA1n1 A1n1 (9)[A1\; 2/n\; 1\;(15)]
[h + k + l][h + l]kI1–1I121 (5)I1m1 (8)[I1\; 2/m\; 1\;(12)]
[h + k + l]h, lkI1a1 I1a1 (9)[I1\; 2/a\; 1\;(15)]
Unique axis cExtinction symbolLaue class [1\; 1\; 2/m]
Reflection conditionsPoint group
hkl
0kl h0l
hk0
h00 0k0
00l2m[2/m]
   P11–P112 (3)P11m (6)[P11\; 2/m\;(10)]
  l[P112_{1}][P112_{1}\;(4)] [P11\; 2_{1}/m\;(11)]
 h P11a P11a (7)[P11\; 2/a\;(13)]
 hl[P11\; 2_{1}/a]  [P11\; 2_{1}/a\;(14)]
 k P11b P11b (7)[P11\; 2/b\;(13)]
 kl[P11\; 2_{1}/b]  [P11\; 2_{1}/b\;(14)]
 [h + k] P11n P11n (7)[P11\; 2/n\;(13)]
 [h + k]l[P11\; 2_{1}/n]  [P11\; 2_{1}/n\;(14)]
[h + l]hlB11–B112 (5)B11m (8)[B11\; 2/m\;(12)]
[h + l]h, klB11n B11n (9)[B11\; 2/n\;(15)]
[k + l]klA11–A112 (5)A11m (8)[A11\; 2/m\;(12)]
[k + l]h, klA11a A11a (9)[A11\; 2/a\;(15)]
[h + k + l][h + k]lI11–I112 (5)I11m (8)[I11\; 2/m\;(12)]
[h + k + l]h, klI11b I11b (9)[I11\; 2/b\;(15)]
Unique axis aExtinction symbolLaue class [2/m\; 1\; 1]
Reflection conditionsPoint group
hkl
h0l hk0
0kl
0k0 00l
h002m[2/m]
   P–11P211 (3)Pm11 (6)[P2/m\;11\;(10)]
  h[P2_{1}]11[P2_{1}]11 (4) [P2_{1}/m\;11\;(11)]
 k Pb11 Pb11 (7)[P2/b\;11\;(13)]
 kh[P 2_{1}/b\ 11]  [P2_{1}/b\;11\;(14)]
 l Pc11 Pc11 (7)[P2/c\;11\;(13)]
 lh[P 2_{1}/c\;11]  [P2_{1}/c\ 11\;(14)]
 [k + l] Pn11 Pn11 (7)[P2/n\;11\;(13)]
 [k + l]h[P 2_{1}/n\;11]  [P2_{1}/n\;11\;(14)]
[h + k]khC–11C211 (5)Cm11 (8)[C2/m\;11\;(12)]
[h + k]k, lhCn11 Cn11 (9)[C2/n\;11\;(15)]
[h + l]lhB–11B211 (5)Bm11 (8)[B2/m\;11\;(12)]
[h + l]k, lhBb11 Bb11 (9)[B2/b\;11\;(15)]
[h + k + l][k + l]hI–11I211 (5)Im11 (8)[I2/m\;11\;(12)]
[h + k + l]k, lhIc11 Ic11 (9)[I2/c\;11\;(15)]

ORTHORHOMBIC, Laue class mmm ([2/m\; 2/m\; 2/m])

In this table, the symbol e in the space-group symbol represents the two glide planes given between parentheses in the corresponding extinction symbol. Only for one of the two cases does a bold printed symbol correspond with the standard symbol.

Reflection conditionsLaue class mmm ([2/m\; 2/m\; 2/m])
hkl0klh0lhk0h000k000lExtinction symbolPoint group
222[\!\matrix{mm2\cr m2m\cr 2mm\cr}]mmm
       P– – –P222 (16)Pmm2 (25)Pmmm (47)
         Pm2m (25) 
         P2mm (25) 
      lP– –[2_{1}][{\bi P}{\bf 222}_{{\bf 1}}\;(17)]  
     k P[2_{1}][P22_{1}2\;(17)]  
     klP[2_{1}2_{1}][P22_{1}2_{1}\;(18)]  
    h  [P2_{1}]– –[P2_{1}22\;(17)]  
    h l[P2_{1}][2_{1}][P2_{1}22_{1}\;(18)]  
    hk [P2_{1}2_{1}][{\bi P}{\bf 2}_{{\bf 1}}{\bf 2}_{{\bf 1}}{\bf 2}\;(18)]  
    hkl[P2_{1}2_{1}2_{1}][{\bi P}{\bf 2}_{{\bf 1}}{\bf 2}_{{\bf 1}}{\bf 2}_{{\bf 1}}\;(19)]  
   hh  P– –a Pm2a (28) 
         [P2_{1}ma\;(26)]Pmma (51)
   k k P– –b [Pm2_{1}b\;(26)] 
         P2mb (28)Pmmb (51)
   [h + k]hk P– –n [Pm2_{1}n\;(31)] 
         [P2_{1}mn\;(31)]Pmmn (59)
  h h  P–a– Pma2 (28)Pmam (51)
         [P2_{1}am\;(26)] 
  hhh  P–aa P2aa (27)Pmaa (49)
  hkhk P–ab [P2_{1}ab\;(29)]Pmab (57)
  h[h + k]hk P–an P2an (30)Pman (53)
  l   lP–c– [{\bi P}{\bi m}{\bi c}{\bf 2}_{{\bf 1}}\;(26)] 
         P2cm (28)Pmcm (51)
  lhh lP–ca [P2_{1}ca\;(29)]Pmca (57)
  lk klP–cb P2cb (32)Pmcb (55)
  l[h + k]hklP–cn [P2_{1}cn\;(33)]Pmcn (62)
  [h + l] h lP–n– [{\bi P}{\bi m}{\bi n}{\bf 2}_{{\bf 1}}\;(31)] 
         [P2_{1}nm\;(31)]Pmnm (59)
  [h + l]hh lP–na P2na (30)Pmna (53)
  [h + l]khklP–nb [P2_{1}nb\;(33)]Pmnb (62)
  [h + l][h + k]hklP–nn P2nn (34)Pmnn (58)
 k   k Pb– – Pbm2 (28) 
         [Pb2_{1}m\;(26)]Pbmm (51)
 k hhk Pb–a [Pb2_{1}a\;(29)]Pbma (57)
 k k k Pb–b Pb2b (27)Pbmb (49)
 k [h + k]hk Pb–n Pb2n (30)Pbmn (53)
 kh hk Pba– Pba2 (32)Pbam (55)
 khhhk Pbaa  Pbaa (54)
 khkhk Pbab  Pbab (54)
 kh[h + k]hk Pban  Pban (50)
 kl  klPbc– [Pbc2_{1}\;(29)]Pbcm (57)
 klhhklPbca  Pbca (61)
 klk klPbcb  Pbcb (54)
 kl[h + k]hklPbcn  Pbcn (60)
 k[h + l] hklPbn– [Pbn2_{1}\;(33)]Pbnm (62)
 k[h + l]hhklPbna  Pbna (60)
 k[h + l]khklPbnb  Pbnb (56)
 k[h + l][h + k]hklPbnn  Pbnn (52)
 l    lPc– – [Pcm2_{1}\;(26)] 
         Pc2m (28)Pcmm (51)
 l hh lPc–a Pc2a (32)Pcma (55)
 l k klPc–b [Pc2_{1}b\;(29)]Pcmb (57)
 l [h + k]hklPc–n [Pc2_{1}n\;(33)]Pcmn (62)
 lh h lPca– [{\bi P}{\bi c}{\bi a}{\bf 2}_{{\bf 1}}\;(29)]Pcam (57)
 lhhh lPcaa  Pcaa (54)
 lhkhklPcab  Pcab (61)
 lh[h + k]hklPcan  Pcan (60)
 ll   lPcc– Pcc2 (27)Pccm (49)
 llhh lPcca  Pcca (54)
 llk klPccb  Pccb (54)
 ll[h + k]hklPccn  Pccn (56)
 l[h + l] h lPcn Pcn2 (30)Pcnm (53)
 l[h + l]hh lPcna  Pcna (50)
 l[h + l]khklPcnb  Pcnb (60)
 l[h + l][h + k]hklPcnn  Pcnn (52)
 [k + l]   klPn – – [Pnm2_{1}\;(31)]Pnmm (59)
         [Pn2_{1}m\;(31)] 
 [k + l] hhklPn–a [Pn2_{1}a\;(33)]Pnma (62)
 [k + l] k klPn–b Pn2b (30)Pnmb (53)
 [k + l] [h + k]hklPn–n Pn2n (34)Pnmn (58)
 [k + l]h hklPna [{\bi P}{\bi n}{\bi a}{\bf 2}_{{\bf 1}}\;(33)]Pnam (62)
 [k + l]hhhklPnaa  Pnaa (56)
 [k + l]hkhklPnab  Pnab (60)
 [k + l]h[h + k]hklPnan  Pnan (52)
 [k + l]l  klPnc Pnc2 (30)Pncm (53)
 [k + l]lhhklPnca  Pnca (60)
 [k + l]lk klPncb  Pncb (50)
 [k + l]l[h + k]hklPncn  Pncn (52)
 [k + l][h + l] hklPnn Pnn2 (34)Pnnm (58)
 [k + l][h + l]hhklPnna  Pnna (52)
 [k + l][h + l]khklPnnb  Pnnb (52)
 [k + l][h + l][h + k]hklPnnn  Pnnn (48)
[h + k]kh[h + k]hk C – – –C222 (21)Cmm2 (35)Cmmm (65)
         Cm2m (38) 
         C2mm (38) 
[h + k]kh[h + k]hklC– –[2_{1}][{\bi C}{\bf 222}_{{\bf 1}}\;(20)]  
[h + k]khh, khk C– –(ab) Cm2e (39)Cmme (67)
         C2me (39) 
[h + k]kh, l[h + k]hklC–c [{\bi C}{\bi m}{\bi c}{\bf 2}_{{\bf 1}}\;(36)]Cmcm (63)
         C2cm (40) 
[h + k]kh, lh, khklC–c(ab) C2ce (41)Cmce (64)
[h + k]k, lh[h + k]hklCc – – [Ccm2_{1}\;(36)]Ccmm (63)
         Cc2m (40) 
[h + k]k, lhh, khklCc –(ab) Cc2e (41)Ccme (64)
[h + k]k, lh, l[h + k]hklCcc Ccc2 (37)Cccm (66)
[h + k]k, lh, lh, khklCcc(ab)  Ccce (68)
[h + l]l[h + l]hh lB – – –B222 (21)Bmm2 (38)Bmmm (65)
         Bm2m (35) 
         B2mm (38) 
[h + l]l[h + l]hhklB[2_{1}][B22_{1}2\;(20)]  
[h + l]l[h + l]h, khklB– –b [Bm2_{1}b\;(36)]Bmmb (63)
         B2mb (40) 
[h + l]lh, lhh lB –(ac)– Bme2 (39)Bmem (67)
         B2em (39) 
[h + l]lh, lh, khklB –(ac)b B2eb (41)Bmeb (64)
[h + l]k, l[h + l]hhklBb – – Bbm2 (40)Bbmm (63)
         Bb21m (36) 
[h + l]k, l[h + l]h, khklBb–b Bb2b (37)Bbmb (66)
[h + l]k, lh, lhhklBb(ac)– Bbe2 (41)Bbem (64)
[h + l]k, lh, lh, khklBb(ac)b  Bbeb (68)
[k + l][k + l]lk klA – – –A222 (21)Amm2 (38)Ammm (65)
         Am2m (38) 
         A2mm (35) 
[k + l][k + l]lkhkl[A2_{1}]– –[A2_{1}22\;(20)]  
[k + l][k + l]lh, khklA– –a Am2a (40)Amma (63)
         [A2_{1}ma\;(36)] 
[k + l][k + l]h, lkhklA–a Ama2 (40)Amam (63)
         [A2_{1}am\;(36)] 
[k + l][k + l]h, lh, khklA–aa A2aa (37)Amaa (66)
[k + l]k, llk klA(bc)– – Aem2 (39)Aemm (67)
         Ae2m (39) 
[k + l]k, llh, khklA(bc)– a Ae2a (41)Aema (64)
[k + l]k, lh, lkhklA(bc)a Aea2 (41)Aeam (64)
[k + l]k, lh, lh, khklA(bc)aa  Aeaa (68)
[h + k + l][k + l][h + l][h + k]hklI – – –[\left[\!\matrix{{\bi I}{\bf 222}\ (23)\hfill\cr{\bi I}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}{\bf 2}_{\bf 1}(24)}\!\!\right]\!]Imm2 (44)Immm (71)
        Im2m (44) 
         I2mm (44) 
[h + k + l][k + l][h + l]h, khklI – –(ab) Im2a (46)Imma (74)
         I2mb (46)Immb (74)
[h + k + l][k + l]h, l[h + k]hklI –(ac)– Ima2 (46)Imam (74)
         I2cm (46)lmcm (74)
[h + k + l][k + l]h, lh, khklIcb I2cb (45)Imcb (72)
[h + k + l]k, l[h + l][h + k]hklI(bc)– – Iem2 (46)Iemm (74)
         Ie2m (46) 
[h + k + l]k, l[h + l]h, khklIca Ic2a (45)Icma (72)
[h + k + l]k, lh, l[h + k]hklIba Iba2 (45)Ibam (72)
[h + k + l]k, lh, lh, khklIbca  Ibca (73)
          Icab (73)
[h + k,h + l,k + l][k, l][h, l][h, k]hklF – – –F222 (22)Fmm2 (42)Fmmm (69)
         Fm2m (42) 
         F2mm (42) 
[h + k,h + l,k + l]k, l[h + l = 4n]; h, l[h + k = 4n]; h, k[h = 4n][k = 4n][l = 4n]F–dd F2dd (43) 
[h + k,h + l,k + l][k + l = 4n]; k, lh, l[h + k = 4n]; h, k[h = 4n][k = 4n][l = 4n]Fd–d Fd2d (43) 
[h + k,h + l,k + l][k + l = 4n]; k, l[h + l = 4n]; h, lh, k[h = 4n][k = 4n][l = 4n]Fdd– Fdd2 (43) 
[h + k,h + l,k + l][k + l = 4n]; k, l[h + l = 4n]; h, l[h + k = 4n]; h, k[h = 4n][k = 4n][l = 4n]Fddd  Fddd (70)

TETRAGONAL, Laue classes [4/m] and [4/mmm]

Reflection conditionsExtinction symbolLaue class
[4/m][4/mmm\;(4/m\; 2/m\; 2/m)]
Point group
hklhk00klhhl00l0k0hh04[\bar{4}][4/m]4224mm[\bar{4}2m\ \ \bar{4}m2][4/mmm]
       P – – –P4 (75)[P\bar{4}\;(81)][P4/m\;(83)]P422 (89)P4mm (99)[P\bar{4}]2m (111)[P4/mmm\;(123)]
             [P\bar{4}m2\;(115)] 
     k P[2_{1}]   [P42_{1}2\;(90)] [P\bar{4}2_{1}m\;(113)] 
    l  [P4_{2}]– –[P4_{2}\;(77)] [P4_{2}/m\;(84)][P4_{2}22\;(93)]   
    lk [P4_{2}2_{1}]   [P4_{2}2_{1}2\;(94)]   
    [l = 4n]  [P4_{1}]– –[\!\left\{\!\matrix{P4_{1}\; (76)\cr P4_{3}\; (78)\cr}\!\right\}]  [\!\left\{\!\matrix{P4_{1}22\; (91)\cr P4_{3}22\; (95)\cr}\!\right\}]   
    [l = 4n]k [P4_{1}2_{1}]   [\!\left\{\!\matrix{P4_{1}2_{1}2\; (92)\cr P4_{3}2_{1}2\; (96)\cr}\!\right\}]   
   ll  P – – c    [P4_{2}mc\;(105)][P\bar{4}2c\;(112)][P4_{2}/mmc\;(131)]
   llk P[2_{1}c]     [P\bar{4}2_{1}c\;(114)] 
  k  k Pb    P4bm (100)[P\bar{4}b2\;(117)][P4/mbm\;(127)]
  kllk Pbc    [P4_{2}bc\;(106)] [P4_{2}/mbc\;(135)]
  l l  Pc    [P4_{2}cm\;(101)][P\bar{4}c2\;(116)][P4_{2}/mcm\;(132)]
  lll  Pcc    P4cc (103) [P4/mcc\;(124)]
  [k + l] lk Pn    [P4_{2}nm\;(102)][P\bar{4}n2\;(118)][P4_{2}/mnm\;(136)]
  [k + l]llk Pnc    P4nc (104) [P4/mnc\;(128)]
 [h + k]   k Pn – –  [P4/n\;(85)]   [P4/nmm\;(129)]
 [h + k]  lk [P4_{2}/n]– –  [P4_{2}/n\;(86)]    
 [h + k] llk Pnc      [P4_{2}/nmc\;(137)]
 [h + k]k  k Pnb      [P4/nbm\;(125)]
 [h + k]kllk Pnbc      [P4_{2}/nbc\;(133)]
 [h + k]l lk Pnc      [P4_{2}/ncm\;(138)]
 [h + k]lllk Pncc      [P4/ncc\;(130)]
 [h + k][k + l] lk Pnn      [P4_{2}/nnm\;(134)]
 [h + k][k + l]llk Pnnc      [P4/nnc\;(126)]
[h + k + l][h + k][k + l]llk I – – –I4 (79)[I\bar{4}\;(82)][I4/m\;(87)]I422 (97)I4mm (107)[I\bar{4}2m\;(121)][I4/mmm\;(139)]
             [I\bar{4}m2\;(119)] 
[h + k + l][h + k][k + l]l[l = 4n]k [I4_{1}]– –[I4_{1}\;(80)]  [I4_{1}]22 (98)   
[h + k + l][h + k][k + l] §[l = 4n]khI – – d    [I4_{1}md\;(109)][I\bar{4}2d\;(122)] 
[h + k + l][h + k]k, lllk Ic    I4cm (108)[I\bar{4}c2\;(120)][I4/mcm\;(140)]
[h + k + l][h + k]k, l §[l = 4n]khIcd    [I4_{1}cd\;(110)]  
[h + k + l]h, k[k + l]l[l = 4n]k [I4_{1}/a]– –  [I4_{1}/a\;(88)]    
[h + k + l]h, k[k + l] §[l = 4n]khIad      [I4_{1}/amd\;(141)]
[h + k + l]h, kk, l §[l = 4n]khIacd      [I4_{1}/acd\;(142)]

TRIGONAL, Laue classes [\bar{3}] and [\bar{3}m]

Reflection conditionsExtinction symbolLaue class
[\bar{3}][\matrix{\bar{3}m1\;(\bar{3}\;2/m\; 1)\hfill\cr \bar{3}m\hfill\cr}][\bar{3}1m\; (\bar{3}\; 1\; 2/m)]
Hexagonal axesPoint group
hkil[h\bar{h}0l][hh\overline{2h}l]000l3[\bar{3}]3213m1[\bar{3}m1]31231m[\bar{3}1m]
323m[\bar{3}m]
    P – – –P3 (143)[P\bar{3}\;(147)]P321 (150)P3m1 (156)[P\bar{3}m1\;(164)]P312 (149)P31m (157)[P\bar{3}1m\;(162)]
   [l = 3n][P3_{1}]– –[\!\left\{\!\matrix{P3_{1} (144)\cr P3_{2} (145)\cr}\!\right\}]  [\!\left\{\!\matrix{P3_{1}21\;(152)\cr P3_{2}21\;(154)\cr}\!\right\}]   [\!\left\{\!\matrix{P3_{1}12\;(151)\cr P3_{2}12\;(153)\cr}\!\right\}]   
  llP – – c      P31c (159)[P\bar{3}1c\;(163)]
 l lPc   P3cl (158)[P\bar{3}c1\;(165)]   
[- h + k + l = 3n][h + l = 3n][l = 3n][l = 3n]R(obv)– – R3 (146)[R\bar{3}\;(148)]R32 (155)R3m (160)[R\bar{3}m\;(166)]   
[- h + k + l = 3n][h + l = 3n;\;l][l = 3n][l = 6n]R(obv)– c   R3c (161)[R\bar{3}c\;(167)]   
[h - k + l = 3n][- h + l = 3n][l = 3n][l = 3n]R(rev)– –R3 (146)[R\bar{3}\;(148)]R32 (155)R3m (160)[R\bar{3}m\;(166)]   
[h - k + l = 3n][- h + l = 3n;\; l][l = 3n][l = 6n]R(rev)– c   R3c (161)[R\bar{3}c\;(167)]   
Rhombohedral axesExtinction symbolPoint group 
hklhhlhhh3[\bar{3}]323m[\bar{3}m]
    R – –R3(146)[R\bar{3}\;(148)]R32 (155)R3m (160)[R\bar{3}m\;(166)]
  lhRc   R3c (161)[R\bar{3}c\;(167)]

HEXAGONAL, Laue classes [6/m] and [6/mmm]

Reflection conditionsExtinction symbolLaue class
[6/m][6/mmm\;(6/m\; 2/m\; 2/m)]
Point group
[h\bar{h}0l][hh\overline{2h}l]000l6[\bar{6}][6/m]6226mm[\matrix{\bar{6}2m\cr \bar{6}m2\cr}][6/mmm]
   P – – –P6 (168)[P\bar{6}\;(174)][P6/m\;(175)]P622 (177)P6mm (183)[P\bar{6}2m\;(189)][P6/mmm\;(191)]
         [P\bar{6}m2\;(187)] 
  l[P6_{3}]– –[P6_{3}\;(173)] [P6_{3}/m\;(176)][P6_{3}22\;(182)]   
  [l = 3n][P6_{2}]– –[\!\left\{\!\matrix{P6_{2}\; (171)\cr P6_{4}\; (172)\cr}\!\right\}]  [\!\left\{\!\matrix{P6_{2}22\; (180)\cr P6_{4}22\; (181)\cr}\!\right\}]   
  [l = 6n][P6_{1}]– –[\!\left\{\!\matrix{P6_{1}\; (169)\cr P6_{3}\; (170)\cr}\!\right\}]  [\!\left\{\!\matrix{P6_{1}22\; (178)\cr P6_{5}22\; (179)\cr}\!\right\}]   
 llP– – c    [P6_{3}mc\;(186)][P\bar{6}2c\;(190)][P6_{3}/mmc\;(194)]
l lPc    [P6_{3}cm\;(185)][P\bar{6}c2\;(188)][P6_{3}/mcm\;(193)]
lllPcc    P6cc (184) P[6/]mcc (192)

CUBIC, Laue classes [m\bar{3}] and [m\bar{3}m]

Reflection conditions (Indices are permutable, apart from space group No. 205)††Extinction symbolLaue class
[m\bar{3}\; (2/m\; \bar{3})][m\bar{3}m\; (4/m\; \bar{3}\; 2/m)]
Point group
hkl0klhhl00l23[m\bar{3}]432[\bar{4}3m][m\bar{3}m]
    P – – –P23 (195)[Pm\bar{3}\; (200)]P432 (207)[P\bar{4}3m\; (215)][Pm\bar{3}m\; (221)]
   l[\!\left\{\!\matrix{P2_{1}\hbox{--}\;\hbox{--}\cr P4_{2}\hbox{--}\;\hbox{--}\cr}\right.][P2_{1}3\; (198)] [P4_{2}32\; (208)]  
   [l = 4n][P4_{1}]– –  [\!\left\{\!\matrix{P4_{1}32\; (213)\cr P4_{3}32 \;(212)\cr}\!\right\}]   
  llP– –n   [P\bar{4}3n\; (218)][Pm\bar{3}n\; (223)]
 k†† lPa – – [Pa\bar{3}\; (205)]   
 [k + l] lPn – – [Pn\bar{3}\; (201)]  [Pn\bar{3}m\; (224)]
 [k + l]llPn–n    [Pn\bar{3}n\; (222)]
[h + k + l][k + l]llI – – –[\left[\matrix{I23\ (197)\hfill\cr I2_{1}3\ (199)\cr}\right]][Im\bar{3}\; (204)]I432 (211)[I\bar{4}3m\; (217)][Im\bar{3}m\; (229)]
[h + k + l][k + l]l[l = 4n][I4_{1}]– –  [I4_{1}32\; (214)]  
[h + k + l][k + l][2h + l = 4n,l][l = 4n]I– –d   [l\bar{4}3d\; (220)] 
[h + k + l]k, lllIa – – [Ia\bar{3}\; (206)]   
[h + k + l]k, l[2h + l = 4n,l][l = 4n]Ia–d    [Ia\bar{3}d\; (230)]
[h + k,h + l,k + l]k, l[h + l]lF – – –F23 (196)[Fm\bar{3}\; (202)]F432 (209)[F\bar{4}3m\; (216)][Fm\bar{3}m\; (225)]
[h + k,h + l,k + l]k, l[h + l][l = 4n][F4_{1}]– –  [F4_{1}32\; (210)]  
[h + k,h + l,k + l]k, lh, llF– –c   [F\bar{4}3c\; (219)][Fm\bar{3}c\; (226)]
[h + k,h + l,k + l][k + l = 4n,k,l][h + l][l = 4n]Fd – – [Fd\bar{3}\;(203)]  [Fd\bar{3}m\; (227)]
[h + k,h + l,k + l][k + l = 4n,k,l]h, l[l = 4n]Fd–c    [Fd\bar{3}c\;(228)]
Pair of space groups with common point group and symmetry elements but differing in the relative location of these elements.
Pair of enantiomorphic space groups, cf. Section 3.1.5[link].
§Condition: [2h + l = 4n{\rm ;}\;l].
For obverse and reverse settings cf. Section 1.2.1[link] . The obverse setting is standard in these tables. The transformation reverse [\rightarrow] obverse is given by [{\bf a}(\hbox{obv.}) = - {\bf a}(\hbox{rev.})], [{\bf b}(\hbox{obv.}) = - {\bf b}(\hbox{rev.})], [{\bf c}(\hbox{obv.}) = {\bf c}(\hbox{rev.})].
††For No. 205, only cyclic permutations are permitted. Conditions are 0kl: [k = 2n]; h0l: [l = 2n]; hk0: [h = 2n].

The left-hand side of the table contains the Reflection conditions. Conditions of the type [h = 2n] or [h + k = 2n] are abbreviated as h or [h + k]. Conditions like [h = 2n, k = 2n, h + k = 2n] are quoted as h, k; in this case, the condition [h + k = 2n] is not listed as it follows directly from [h = 2n, k = 2n]. Conditions with [l = 3n], [l = 4n], [{l = 6n}] or more complicated expressions are listed explicitly.

From left to right, the table contains the integral, zonal and serial conditions. From top to bottom, the entries are ordered such that left columns are kept empty as long as possible. The leftmost column that contains an entry is considered as the `leading column'. In this column, entries are listed according to increasing complexity. This also holds for the subsequent columns within the restrictions imposed by previous columns on the left. The make-up of the table is such that observed reflection conditions should be matched against the table by considering, within each crystal system, the columns from left to right.

The centre column contains the Extinction symbol. To obtain the complete diffraction symbol, the Laue-class symbol has to be added in front of it. Be sure that the correct Laue-class symbol is used if the crystal system contains two Laue classes. Particular care is needed for Laue class [\bar{3}m] in the trigonal system, because there are two possible orientations of this Laue symmetry with respect to the crystal lattice, [\bar{3}m1] and [\bar{3}1m]. The correct orientation can be obtained directly from the diffraction record.

The right-hand side of the table gives the Possible space groups which obey the reflection conditions. For crystal systems with two Laue classes, a subdivision is made according to the Laue symmetry. The entries in each Laue class are ordered according to their point groups. All space groups that match both the reflection conditions and the Laue symmetry, found in a diffraction experiment, are possible space groups of the crystal.

The space groups are given by their short Hermann–Mauguin symbols, followed by their number between parentheses, except for the monoclinic system, where full symbols are given (cf. Section 2.2.4[link] ). In the monoclinic and orthorhombic sections of Table 3.1.4.1[link], which contain entries for the different settings and cell choices, the `standard' space-group symbols (cf. Table 4.3.2.1[link] ) are printed in bold face. Only these standard representations are treated in full in the space-group tables.

Example

The diffraction pattern of a compound has Laue class mmm. The crystal system is thus orthorhombic. The diffraction spots are indexed such that the reflection conditions are [0kl: l = 2n]; [h0l: h + l = 2n]; [h00: h = 2n]; [00l:l = 2n]. Table 3.1.4.1[link] shows that the diffraction symbol is mmmPcn–. Possible space groups are Pcn2 (30) and Pcnm (53). For neither space group does the axial choice correspond to that of the standard setting. For No. 30, the standard symbol is Pnc2, for No. 53 it is Pmna. The transformation from the basis vectors [{\bf a}_{e}, {\bf b}_{e}, {\bf c}_{e}], used in the experiment, to the basis vectors [{\bf a}_{s}, {\bf b}_{s}, {\bf c}_{s}] of the standard setting is given by [{\bf a}_{s} = {\bf b}_{e}, {\bf b}_{s} = -{\bf a}_{e}] for No. 30 and by [{\bf a}_{s} = {\bf c}_{e}, {\bf c}_{s} = -{\bf a}_{e}] for No. 53.

Possible pitfalls

Errors in the space-group determination may occur because of several reasons.

  • (1) Twinning of the crystal

    Difficulties that may be encountered are shown by the following example. Say that a monoclinic crystal (b unique) with the angle β fortuitously equal to [\sim 90^{\circ}] is twinned according to (100). As this causes overlap of the reflections hkl and [\bar{h}kl], the observed Laue symmetry is mmm rather than [2/m]. The same effect may occur within one crystal system. If, for instance, a crystal with Laue class [4/m] is twinned according to (100) or (110), the Laue class [4/mmm] is simulated (twinning by merohedry, cf. Catti & Ferraris, 1976[link], and Koch, 2004[link]). Further examples are given by Buerger (1960)[link]. Errors due to twinning can often be detected from the fact that the observed reflection conditions do not match any of the diffraction symbols.

  • (2) Incorrect determination of reflection conditions

    Either too many or too few conditions may be found. For serial reflections, the first case may arise if the structure is such that its projection on, say, the b direction shows pseudo-periodicity. If the pseudo-axis is [b/p], with p an integer, the reflections 0k0 with [k \neq p] are very weak. If the exposure time is not long enough, they may be classified as unobserved which, incorrectly, would lead to the reflection condition [0k0: k = p]. A similar situation may arise for zonal conditions, although in this case there is less danger of errors. Many more reflections are involved and the occurrence of pseudo-periodicity is less likely for two-dimensional than for one-dimensional projections.

    For `structural' or non-space-group absences, see Section 2.2.13[link] .

    The second case, too many observed reflections, may be due to multiple diffraction or to radiation impurity. A textbook description of multiple diffraction has been given by Lipson & Cochran (1966)[link]. A well known case of radiation impurity in X-ray diffraction is the contamination of a copper target with iron. On a photograph taken with the radiation from such a target, the iron radiation with [\lambda \hbox{(Fe)} \sim 5/4\lambda \hbox{(Cu)}] gives a reflection spot [4h_{\prime} 4k_{\prime} 4l] at the position [5h_{\prime} 5k_{\prime} 5l] for copper [[\lambda (\hbox{Cu}\; K\bar{\alpha})\! =\! 1.5418\;\hbox{\AA}], [\lambda (\hbox{Fe}\; K\bar{\alpha})\! =\! 1.9373\;\hbox{\AA}]]. For reflections 0k0, for instance, this may give rise to reflected intensity at the copper 050 position so that, incorrectly, the condition [0k0: k = 2n] may be excluded.

  • (3) Incorrect assignment of the Laue symmetry

    This may be caused by pseudo-symmetry or by `diffraction enhancement'. A crystal with pseudo-symmetry shows small deviations from a certain symmetry, and careful inspection of the diffraction pattern is necessary to determine the correct Laue class. In the case of diffraction enhancement, the symmetry of the diffraction pattern is higher than the Laue symmetry of the crystal. Structure types showing this phenomenon are rare and have to fulfil specified conditions. For further discussions and references, see Perez-Mato & Iglesias (1977)[link].

References

First citation Buerger, M. J. (1960). Crystal-structure analysis, Chap. 5. New York: Wiley.Google Scholar
First citation Catti, M. & Ferraris, G. (1976). Twinning by merohedry and X-ray crystal structure determination. Acta Cryst. A32, 163–165.Google Scholar
First citation Koch, E. (2004). Twinning. International Tables for Crystallography Vol. C, 3rd ed., edited by E. Prince, ch. 1.3. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Lipson, H. & Cochran, W. (1966). The determination of crystal structures, Chaps. 3 and 4.4. London: Bell.Google Scholar
First citation Perez-Mato, J. M. & Iglesias, J. E. (1977). On simple and double diffraction enhancement of symmetry. Acta Cryst. A33, 466–474.Google Scholar








































to end of page
to top of page