International Tables for Crystallography (2016). Vol. A, ch. 3.4, pp. 792-825
doi: 10.1107/97809553602060000932

Chapter 3.4. Lattice complexes

Contents

  • 3.4. Lattice complexes  (pp. 792-825) | html | pdf | chapter contents |
    • 3.4.1. The concept of lattice complexes and limiting complexes  (pp. 792-796) | html | pdf |
      • 3.4.1.1. Introduction  (p. 792) | html | pdf |
      • 3.4.1.2. Crystallographic orbits, Wyckoff positions, Wyckoff sets and types of Wyckoff set  (pp. 792-793) | html | pdf |
      • 3.4.1.3. Point configurations and lattice complexes, reference symbols  (pp. 793-794) | html | pdf |
      • 3.4.1.4. Limiting complexes and comprehensive complexes  (pp. 794-795) | html | pdf |
      • 3.4.1.5. Additional properties of lattice complexes  (pp. 795-796) | html | pdf |
        • 3.4.1.5.1. The degrees of freedom  (p. 795) | html | pdf |
        • 3.4.1.5.2. Weissenberg complexes  (pp. 795-796) | html | pdf |
    • 3.4.2. The concept of characteristic and non-characteristic orbits, comparison with the lattice-complex concept  (pp. 796-798) | html | pdf |
      • 3.4.2.1. Definitions  (p. 796) | html | pdf |
      • 3.4.2.2. Comparison of the concepts of lattice complexes and orbit types  (pp. 796-798) | html | pdf |
    • 3.4.3. Descriptive lattice-complex symbols and the assignment of Wyckoff positions to lattice complexes  (pp. 798-800) | html | pdf |
      • 3.4.3.1. Descriptive symbols  (pp. 798-800) | html | pdf |
        • 3.4.3.1.1. Introduction  (p. 798) | html | pdf |
        • 3.4.3.1.2. Invariant lattice complexes  (pp. 798-799) | html | pdf |
        • 3.4.3.1.3. Lattice complexes with degrees of freedom  (pp. 799-800) | html | pdf |
        • 3.4.3.1.4. Properties of the descriptive symbols  (p. 800) | html | pdf |
      • 3.4.3.2. Assignment of Wyckoff positions to Wyckoff sets and to lattice complexes  (p. 800) | html | pdf |
    • 3.4.4. Applications of the lattice-complex concept  (pp. 800-824) | html | pdf |
      • 3.4.4.1. Geometrical properties of point configurations  (pp. 800-823) | html | pdf |
      • 3.4.4.2. Relations between crystal structures  (p. 823) | html | pdf |
      • 3.4.4.3. Reflection conditions  (p. 823) | html | pdf |
      • 3.4.4.4. Phase transitions  (pp. 823-824) | html | pdf |
      • 3.4.4.5. Incorrect space-group assignment  (p. 824) | html | pdf |
      • 3.4.4.6. Application of descriptive lattice-complex symbols  (p. 824) | html | pdf |
      • 3.4.4.7. Weissenberg complexes  (p. 824) | html | pdf |
    • References | html | pdf |
    • Tables
      • Table 3.4.1.1. Reference symbols of the 31 Weissenberg complexes with f ≥ 1 degrees of freedom in [{\bb E}^3]  (p. 796) | html | pdf |
      • Table 3.4.2.1. Reference symbols of the 28 lattice complexes with f ≥ 1 degrees of freedom without any limiting complex  (p. 797) | html | pdf |
      • Table 3.4.3.1. Descriptive symbols of invariant lattice complexes in their characteristic Wyckoff position  (p. 798) | html | pdf |
      • Table 3.4.3.2. Plane groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes  (p. 801) | html | pdf |
      • Table 3.4.3.3. Space groups: assignment of Wyckoff positions to Wyckoff sets and to lattice complexes  (pp. 802-822) | html | pdf |