International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 1.3, p. 92   | 1 | 2 |

Section 1.3.4.4.8. Miscellaneous correlation functions

G. Bricognea

a MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France

1.3.4.4.8. Miscellaneous correlation functions

| top | pdf |

Certain correlation functions can be useful to detect the presence of multiple copies of the same molecule (known or unknown) in the asymmetric unit of a crystal of unknown structure.

Suppose that a crystal contains one or several copies of a molecule [{\scr M}] in its asymmetric unit. If [\mu({\bf x})] is the electron density of that molecule in some reference position and orientation, then [\rho\llap{$-\!$}^{0} = {\textstyle\sum\limits_{j \in J}} \left[{\textstyle\sum\limits_{g \in G}} S_{g}^{\#} (T_{j}^{\#} \mu)\right],] where [T_{j}: {\bf x} \;\longmapsto\; {\bf C}_{j} {\bf x} + {\bf d}_{j}] describes the placement of the jth copy of the molecule with respect to the reference copy. It is assumed that each such copy is in a general position, so that there is no isotropy subgroup.

The methods of Section 1.3.4.2.2.9[link] (with [\rho\llap{$-\!$}_{j}] replaced by [C_{j}^{\#} \mu], and [{\bf x}_{j}] by [{\bf d}_{j}]) lead to the following expression for the auto-correlation of [\rho\llap{$-\!$}^{0}]: [\eqalign{ \breve{\rho\llap{$-\!$}}^{0} * \rho\llap{$-\!$}^{0} &= {\textstyle\sum\limits_{j_{1}}} {\textstyle\sum\limits_{j_{2}}} {\textstyle\sum\limits_{g_{1}}} {\textstyle\sum\limits_{g_{2}}} \boldtau_{{S_{g_{2}}} ({\bf d}_{j_{2}}) - s_{g_{1}} ({\bf d}_{j_{1}})}\cr &\quad \times [(R_{g_{1}}^{\#} C_{j_{1}}^{\#} \breve{\mu}) * (R_{g_{2}}^{\#} C_{j_{2}}^{\#} \mu)].}]

If μ is unknown, consider the subfamily σ of terms with [j_{1} = j_{2} = j] and [g_{1} = g_{2} = g]: [\sigma = {\textstyle\sum\limits_{j}} {\textstyle\sum\limits_{g}} \;R_{g}^{\#} C_{j}^{\#} (\breve{\mu} * \mu).] The scalar product [(\sigma, R^{\#} \sigma)] in which R is a variable rotation will have a peak whenever [R = (R_{g_{1}} C_{j_{1}})^{-1} (R_{g_{2}} C_{j_{2}})] since two copies of the `self-Patterson' [\breve{\mu} * \mu] of the molecule will be brought into coincidence. If the interference from terms in the Patterson [\pi = r * \breve{\rho\llap{$-\!$}}^{0} * \rho\llap{$-\!$}^{0}] other than those present in σ is not too serious, the `self-rotation function' [(\pi, R^{\#} \pi)] (Rossmann & Blow, 1962[link]; Crowther, 1972[link]) will show the same peaks, from which the rotations [\{C_{j}\}_{j \in J}] may be determined, either individually or jointly if for instance they form a group.

If μ is known, then its self-Patterson [\breve{\mu} * \mu] may be calculated, and the [C_{j}] may be found by examining the `cross-rotation function' [[\pi, R^{\#} (\breve{\mu} * \mu)]] which will have peaks at [R = R_{g} C_{j}, g \in G, j \in J]. Once the [C_{j}] are known, then the various copies [C_{j}^{\#} \mu] of [{\scr M}] may be Fourier-analysed into structure factors: [M_{j} ({\bf h}) = \bar{{\scr F}}[C_{j}^{\#} \mu] ({\bf h}).] The cross terms with [j_{1} \neq j_{2}, g_{1} \neq g_{2}] in [\breve{\rho\llap{$-\!$}}^{0} * \rho\llap{$-\!$}^{0}] then contain `motifs' [(R_{g_{1}}^{\#} C_{j_{1}}^{\#} \breve{\mu}) * (R_{g_{2}}^{\#} C_{j_{2}}^{\#} \mu),] with Fourier coefficients [\overline{M_{j_{1}} ({\bf R}_{g_{1}}^{T} {\bf h})} \times M_{j_{2}} ({\bf R}_{g_{2}}^{T} {\bf h}),] translated by [S_{g_{2}} ({\bf d}_{j_{2}}) - S_{g_{1}} ({\bf d}_{j_{1}})]. Therefore the `translation functions' (Crowther & Blow, 1967[link]) [\eqalign{ {\scr T}_{j_{1} g_{1}, j_{2} g_{2}} ({\bf s}) &= {\textstyle\sum\limits_{{\bf h}}} |F_{{\bf h}}|^{2} \overline{M_{j_{1}} ({\bf R}_{g_{1}}^{T} {\bf h})}\cr &\quad \times M_{j_{2}} ({\bf R}_{g_{2}}^{T} {\bf h}) \exp (-2 \pi i {\bf h} \cdot {\bf s})}] will have peaks at [{\bf s} = S_{g_{2}} ({\bf d}_{j_{2}}) - S_{g_{1}} ({\bf d}_{j_{1}})] corresponding to the detection of these motifs.

References

First citation Crowther, R. A. (1972). The fast rotation function. In The molecular replacement method, edited by M. G. Rossmann, pp. 173–178. New York: Gordon & Breach.Google Scholar
First citation Crowther, R. A. & Blow, D. M. (1967). A method of positioning a known molecule in an unknown crystal structure. Acta Cryst. 23, 544–548.Google Scholar
First citation Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. 15, 24–31.Google Scholar








































to end of page
to top of page