International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 6.4, pp. 609-616
https://doi.org/10.1107/97809553602060000603

Chapter 6.4. The flow of radiation in a real crystal

T. M. Sabinea

a ANSTO, Private Mail Bag 1, Menai, NSW 2234, Australia

References

First citation Bacon, G. E. & Lowde, R. D. (1948). Secondary extinction and neutron crystallography. Acta Cryst. 1, 303–314.Google Scholar
First citation Becker, P. J. & Coppens, P. (1974). Extinction within the limit of validity of the Darwin transfer equations. I. General formalisms for primary and secondary extinction and their application to spherical crystals. Acta Cryst. A30, 129–147.Google Scholar
First citation Coppens, P. & Hamilton, W. C. (1970). Anisotropic extinction corrections in the Zachariasen approximation. Acta Cryst. A26, 71–83.Google Scholar
First citation Cottrell, A. H. (1953). Dislocations and plastic flow in crystals. Oxford University Press.Google Scholar
First citation Darwin, C. G. (1922). The reflexion of X-rays from imperfect crystals. Philos. Mag. 43, 800–829.Google Scholar
First citation Hamilton, W. C. (1957). The effect of crystal shape and setting on secondary extinction. Acta Cryst. 10, 629–634.Google Scholar
First citation Kampermann, S. P., Sabine, T. M., Craven, B. M. & McMullan, R. K. (1995). Hexamethylenetetramine: extinction and thermal vibrations from neutron diffraction at six temperatures. Acta Cryst. A51, 489–497.Google Scholar
First citation Olekhnovich, N. M. & Olekhnovich, A. I. (1978). Primary extinction for finite crystals. Square-section parallelepiped. Acta Cryst. A34, 321–326.Google Scholar
First citation Olekhnovich, N. M. & Olekhnovich, A. I. (1980). Primary extinction for finite crystals. Cylinder. Acta Cryst. A36, 22–27.Google Scholar
First citation Read, W. T. (1953). Dislocations in crystals. New York: McGraw-Hill.Google Scholar
First citation Sabine, T. M. (1985). Extinction in polycrystalline materials. Aust. J. Phys. 38, 507–518.Google Scholar
First citation Sabine, T. M. (1988). A reconciliation of extinction theories. Acta Cryst. A44, 368–373.Google Scholar
First citation Sabine, T. M. & Blair, D. G. (1992). The Ewald and Darwin limits obtained from the Hamilton–Darwin energy transfer equations. Acta Cryst. A48, 98–103.Google Scholar
First citation Sabine, T. M., Von Dreele, R. B. & Jørgensen, J.-E. (1988). Extinction in time-of-flight neutron powder diffractometry. Acta Cryst. A44, 374–379.Google Scholar
First citation Werner, S. A. (1974). Extinction in mosaic crystals. J. Appl. Phys. 45, 3246–3254.Google Scholar
First citation Wilkins, S. W. (1981). Dynamical X-ray diffraction from imperfect crystals in the Bragg case – extinction and the asymmetric limits. Philos. Trans. R. Soc. London, 299, 275–317.Google Scholar
First citation Wilson, A. J. C. (1949). X-ray optics. London: Methuen.Google Scholar
First citation Zachariasen, W. H. (1945). Theory of X-ray diffraction in crystals. New York: John Wiley, Dover.Google Scholar
First citation Zachariasen, W. H. (1967). A general theory of X-ray diffraction in crystals. Acta Cryst. 23, 558–564.Google Scholar