International
Tables for
Crystallography
Volume D
Physical properties of crystals
Edited by A. Authier

International Tables for Crystallography (2006). Vol. D. ch. 3.3, p. 437

Section 3.3.10.6.1. Anatase, TiO2 (Penn & Banfield, 1998[link], 1999[link])

Th. Hahna* and H. Klapperb

a Institut für Kristallographie, Rheinisch–Westfälische Technische Hochschule, D-52056 Aachen, Germany, and bMineralogisch-Petrologisches Institut, Universität Bonn, D-53113 Bonn, Germany
Correspondence e-mail:  hahn@xtal.rwth-aachen.de

3.3.10.6.1. Anatase, TiO2 (Penn & Banfield, 1998[link], 1999[link])

| top | pdf |

This investigation has been presented already in Section 3.3.10.4.1[link] and Fig. 3.3.10.5[link] as an example of the occurrence of a twin displacement vector, leading to [{\bf t}\approx 1/2 {\bf v}_L], where [{\bf v}_L] is a lattice translation vector parallel to the (112) twin reflection plane of anatase. Another interesting result of this HRTEM study by Penn & Banfield is the formation of anatase–brookite intergrowths during the hydrothermal coarsening of TiO2 nanoparticles. The preferred contact plane is (112) of anatase and (100) of brookite, with [131] of anatase parallel to [011] of brookite in the intergrowth plane. Moreover, it is proposed that brookite may nucleate at (112) twin boundaries of anatase and develop into (100) brookite slabs sandwiched between the anatase twin components. Similarly, after hydrothermal treatment at 523 K, nuclei of rutile at the anatase (112) twin boundary were also observed by HRTEM (Penn & Banfield, 1999[link]). A detailed structural model for this anatase-to-rutile phase transition is proposed by the authors, from which a sluggish nucleation of rutile followed by rapid growth of this phase was concluded.

References

First citation Penn, R. L. & Banfield, J. F. (1998). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nano-crystalline TiO2. Am. Mineral. 83, 1077–1082.Google Scholar
First citation Penn, R. L. & Banfield, J. F. (1999). Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am. Mineral. 84, 871–876.Google Scholar








































to end of page
to top of page