International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 1.3, p. 13   | 1 | 2 |

Section 1.3.4.1.2. Bacterial diseases

W. G. J. Hola* and C. L. M. J. Verlindea

aBiomolecular Structure Center, Department of Biological Structure, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7742, USA
Correspondence e-mail:  hol@gouda.bmsc.washington.edu

1.3.4.1.2. Bacterial diseases

| top | pdf |

A very large number of structures of important drug target proteins of bacterial origin have been solved crystallographically (Table 1.3.4.2[link]). Currently, the most important single infectious bacterial agent is Mycobacterium tuberculosis, with three million deaths and eight million new cases annually (Murray & Salomon, 1998[link]). The crystal structures of several M. tuberculosis potential and proven drug target proteins have been elucidated (Table 1.3.4.2[link]). The complete M. tuberculosis genome has been sequenced recently (Cole et al., 1998[link]), and this will undoubtedly have a tremendous impact on future drug development.

Table 1.3.4.2| top | pdf |
Protein structures of important human pathogenic bacteria

OrganismDisease(s)Protein structures solvedReference
Staphylococcus aureusAbscessesAlpha-haemolysin[1]
EndocarditisAureolysin[2]
GastroenteritisBeta-lactamase[3]
Toxic shock syndromeCollagen adhesin[4]
7,8-Dihydroneopterin aldolase[5]
Dihydropteroate synthetase[6]
Enterotoxin A[7]
Enterotoxin B[8]
Enterotoxin C2[9]
Enterotoxin C3[10]
Exfoliative toxin A[11]
Ile-tRNA-synthetase[12]
Kanamycin nucleotidyltransferase[13]
Leukocidin F[14]
Nuclease[15]
Staphopain[16]
Staphylokinase[17]
Toxic shock syndrome toxin-1[18]
Staphylococcus epidermidisImplant infectionsNone 
Enterococcus faecalisUrinary tract and biliary tract infectionsNADH peroxidase[19]
(Streptococcus faecalis) Histidine-containing phosphocarrier protein[20]
Streptococcus mutansEndocarditisGlyceraldehyde-3-phosphate dehydrogenase[21]
Streptococcus pneumoniaePneumoniaPenicillin-binding protein PBP2x[22]
Meningitis, upper respiratory tract infectionsDpnm DNA adenine methyltransferase[23]
Streptococcus pyogenesPharyngitisInosine monophosphate dehydrogenase[24]
Scarlet fever, toxic shock syndrome, immunologic disorders (acute glomerulonephritis and rheumatic fever)Pyrogenic exotoxin C[25]
Bacillus anthracisAnthraxAnthrax protective antigen[26]
Bacillus cereusFood poisoningBeta-amylase[27]
Beta-lactamase II[28]
Neutral protease[29]
Oligo-1,6-glucosidase[30]
Phospholipase C[31]
Clostridium botulinumBotulismNeurotoxin type A[32]
Clostridium difficilePseudomembranous colitisNone 
Clostridium perfringensGas gangreneAlpha toxin[33]
Food poisoningPerfringolysin O[34]
Clostridium tetaniTetanusToxin C fragment[35]
Corynebacterium diphtheriaeDiphtheriaToxin[36]
Toxin repressor[37]
Listeria monocytogenesMeningitis, sepsisPhosphatidylinositol-specific phospholipase C[38]
Actinomyces israeliiActinomycosisNone 
Nocardia asteroidesNocardiosisNone 
Neisseria gonorrhoeaeGonorrheaType 4 pilin[39]
Carbonic anhydrase[40]
Neisseria meningitidisMeningitisDihydrolipoamide dehydrogenase[41]
Bordetella pertussisWhooping coughToxin[42]
Virulence factor P.69[43]
Brucella sp.BrucellosisNone 
Campylobacter jejuniEnterocolitisNone 
Enterobacter cloacaeUrinary tract infection, pneumoniaBeta-lactamase: class C[44]
UDP-N-acetylglucosamine enolpyruvyltransferase[45]
Escherichia coli   
 ETEC (enterotoxigenic)Traveller's diarrhoeaHeat-labile enterotoxin[46]
Heat-stable enterotoxin (is a peptide)[47]
 EHEC (enterohaemorrhagic)HUSVerotoxin-1[48]
 EPEC (enteropathogenic)DiarrhoeaNone 
 EAEC (enteroaggregative)DiarrhoeaNone 
 EIEC (enteroinvasive)DiarrhoeaNone 
 UPEC (uropathogenic) FimH adhesin[49]
FimC chaperone[49]
PapD[50]
 NMEC (neonatal meningitis)MeningitisNone 
Franciscella tularensisTularemiaNone 
Haemophilus influenzaeMeningitis, otitis media, pneumoniaDiaminopimelate epimerase[51]
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase[52]
Ferric iron binding protein Mirp[53]
Klebsiella pneumoniaeUrinary tract infection, pneumonia, sepsisβ-Lactamase SHV-1[54]
Legionella pneumophilaPneumoniaNone 
Pasteurella multocidaWound infectionNone 
Proteus mirabilisPneumonia, urinary tract infectionCatalase[55]
Glutathione S-transferase[56]
Proteus vulgarisUrinary tract infectionsPvu II DNA-(cytosine N4) methyltransferase[57]
Pvu II endonuclease[58]
Tryptophanase[59]
Salmonella typhiTyphoid feverNone, but many for S. typhimurium linked with zoonotic disease 
Salmonella enteridisEnterocolitisNone 
Serratia marcescensPneumonia, urinary tract infectionSerralysin[60]
Aminoglycoside 3-N-acetyltransferase[61]
Chitinase A[62]
Chitobiase[63]
Endonuclease[64]
Hasa (haemophore)[65]
Prolyl aminopeptidase[66]
Shigella sp.DysenteryChloramphenicol acetyltransferase[67]
Shiga-like toxin I[68]
Vibrio choleraeCholeraCholera toxin[69], [70]
DSBA oxidoreductase[71]
Neuraminidase[104]
Yersinia enterocoliticaEnterocolitisProtein-Tyr phosphatase YOPH[72]
Yersinia pestisPlagueNone 
Pseudomonas aeruginosaWound infection, urinary tract infection, pneumonia, sepsisAlkaline metalloprotease[73]
Amidase operon[74]
Azurin[75]
Cytochrome 551[76]
Cytochrome c peroxidase[77]
Exotoxin A[78]
p-Hydroxybenzoate hydroxylase[79]
Hexapeptide xenobiotic acetyltransferase[80]
Mandelate racemase[81]
Nitrite reductase[82]
Ornithine transcarbamoylase[83]
Porphobilinogen synthase[84]
Pseudolysin[85]
Burkholderia cepaciaWound infection, urinary tract infection, pneumonia, sepsisBiphenyl-cleaving extradiol dioxygenase[86]
cis-Biphenyl-2,3-dihydrodiol-2,3-dehydrogenase[87]
Dialkylglycine decarboxylase[88]
Lipase[89]
Phthalate dioxygenase reductase[90]
Stenotrophomonas maltophilia (= Pseudomonas maltophilia)SepsisNone 
Bacteroides fragilisIntra-abdominal infectionsBeta-lactamase type 2[91]
Mycobacterium lepraeLeprosyChaperonin-10 (GroES homologue)[92]
RUVA protein[93]
Mycobacterium tuberculosisTuberculosis3-Dehydroquinate dehydratase[94]
Dihydrofolate reductase[95]
Dihydropteroate synthase[96]
Enoyl acyl-carrier-protein reductase (InhA)[97]
Mechanosensitive ion channel[98]
Quinolinate phosphoribosyltransferase[99]
Superoxide dismutase (iron dependent)[100]
Iron-dependent repressor 
Mycobacterium bovisTuberculosisTetrahydrodipicolinate-N-succinyltransferase[102]
Chlamydia psitacciPsittacosisNone 
Chlamydia pneumoniaeAtypical pneumoniaNone 
Chlamydia trahomatisOcular, respiratory and genital infectionsNone 
Coxiella burnetiiQ feverNone 
Rickettsia sp.Rocky Mountain spotted feverNone 
Borrelia burgdorferiLyme diseaseOuter surface protein A[103]
Leptospira interrogansLeptospirosisNone 
Treponema pallidumSyphilisNone 
Mycoplasma pneumoniaeAtypical pneumoniaNone 

References: [1] Song et al. (1996)[link]; [2] Banbula et al. (1998)[link]; [3] Herzberg & Moult (1987)[link]; [4] Symersky et al. (1997)[link]; [5] Hennig et al. (1998)[link]; [6] Hampele et al. (1997)[link]; [7] Sundstrom et al. (1996)[link]; [8] Papageorgiou et al. (1998)[link]; [9] Papageorgiou et al. (1995)[link]; [10] Fields et al. (1996)[link]; [11] Vath et al. (1997)[link]; [12] Silvian et al. (1999)[link]; [13] Pedersen et al. (1995)[link]; [14] Pedelacq et al. (1999)[link]; [15] Loll & Lattman (1989)[link]; [16] Hofmann et al. (1993)[link]; [17] Rabijns et al. (1997)[link]; [18] Prasad et al. (1993)[link]; [19] Yeh et al. (1996)[link]; [20] Jia et al. (1993)[link]; [21] Cobessi et al. (1999)[link]; [22] Pares et al. (1996)[link]; [23] Tran et al. (1998)[link]; [24] Zhang, Evans et al. (1999)[link]; [25] Roussel et al. (1997)[link]; [26] Petosa et al. (1997)[link]; [27] Mikami et al. (1999)[link]; [28] Carfi et al. (1995)[link]; [29] Pauptit et al. (1988)[link]; [30] Watanabe et al. (1997)[link]; [31] Hough et al. (1989)[link]; [32] Lacy et al. (1998)[link]; [33] Naylor et al. (1998)[link]; [34] Rossjohn, Feil, McKinstry et al. (1997)[link]; [35] Umland et al. (1997)[link]; [36] Choe et al. (1992)[link]; [37] Qiu et al. (1995)[link]; [38] Moser et al. (1997)[link]; [39] Parge et al. (1995)[link]; [40] Huang, Xue et al. (1998)[link]; [41] Li de la Sierra et al. (1997)[link]; [42] Stein et al. (1994)[link]; [43] Emsley et al. (1996)[link]; [44] Lobkovsky et al. (1993)[link]; [45] Schonbrunn et al. (1996)[link]; [46] Sixma et al. (1991)[link]; [47] Ozaki et al. (1991)[link]; [48] Stein et al. (1992)[link]; [49] Choudhury et al. (1999)[link]; [50] Sauer et al. (1999)[link]; [51] Cirilli et al. (1993)[link]; [52] Hennig et al. (1999)[link]; [53] Bruns et al. (1997)[link]; [54] Kuzin et al. (1999)[link]; [55] Gouet et al. (1995)[link]; [56] Rossjohn, Polekhina et al. (1998)[link]; [57] Gong et al. (1997)[link]; [58] Athanasiadis et al. (1994)[link]; [59] Isupov et al. (1998)[link]; [60] Baumann (1994)[link]; [61] Wolf et al. (1998)[link]; [62] Perrakis et al. (1994)[link]; [63] Tews et al. (1996)[link]; [64] Miller et al. (1994)[link]; [65] Arnoux et al. (1999)[link]; [66] Yoshimoto et al. (1999)[link]; [67] Murray et al. (1995)[link]; [68] Ling et al. (1998)[link]; [69] Merritt et al. (1994)[link]; [70] Zhang et al. (1995)[link]; [71] Hu et al. (1997)[link]; [72] Stuckey et al. (1994)[link]; [73] Miyatake et al. (1995)[link]; [74] Pearl et al. (1994)[link]; [75] Adman et al. (1978)[link]; [76] Almassy & Dickerson (1978)[link]; [77] Fulop et al. (1995)[link]; [78] Allured et al. (1986)[link]; [79] Gatti et al. (1994)[link]; [80] Beaman et al. (1998)[link]; [81] Kallarakal et al. (1995)[link]; [82] Nurizzo et al. (1997)[link]; [83] Villeret et al. (1995)[link]; [84] Frankenberg et al. (1999)[link]; [85] Thayer et al. (1991)[link]; [86] Han et al. (1995)[link]; [87] Hulsmeyer et al. (1998)[link]; [88] Toney et al. (1993)[link]; [89] Kim et al. (1997)[link]; [90] Correll et al. (1992)[link]; [91] Concha et al. (1996)[link]; [92] Mande et al. (1996)[link]; [93] Roe et al. (1998)[link]; [94] Gourley et al. (1999)[link]; [95] Li et al. (2000[link]); [96] Baca et al. (2000[link]); [97] Dessen et al. (1995)[link]; [98] Chang, Spencer et al. (1998)[link]; [99] Sharma et al. (1998)[link]; [100] Cooper et al. (1995)[link]; [102] Beaman et al. (1997)[link]; [103] Li et al. (1997)[link]; [104] Crennell et al. (1994[link]).

The crystal structures of many bacterial dihydrofolate reductases, the target of several antimicrobials including trimethoprim, have also been reported. Recently, the atomic structure of dihydropteroate synthase (DHPS), the target of sulfa drugs, has been elucidated, almost 60 years after the first sulfa drugs were used to treat patients (Achari et al., 1997[link]; Hampele et al., 1997[link]).

A very special set of bacterial proteins are the toxins. Some of these have dramatic effects, with even a single molecule able to kill a host cell. These toxins outsmart and (mis)use many of the defence systems of the host, and their structures are often most unusual and fascinating, as recently reviewed by Lacy & Stevens (1998[link]). The structures of the toxins are actively used for the design of prophylactics and therapeutic agents to treat bacterial diseases [see e.g. Merritt et al. (1997[link]), Kitov et al. (2000[link]) and Fan et al. (2000[link])]. It is remarkable that the properties of these devastating toxins are also used, or at least considered, for the treatment of disease, such as in the engineering of diphtheria toxin to create immunotoxins for the treatment of cancer and the deployment of cholera toxin mutants as adjuvants in mucosal vaccines. Knowledge of the three-dimensional structures of these toxins assists in the design of new therapeutically useful proteins.

References

First citation Achari, A., Somers, D. O., Champness, J. N., Bryant, P. K., Rosemond, J. & Stammers, D. K. (1997). Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nature Struct. Biol. 4, 490–497.Google Scholar
First citation Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E. III, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S. & Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature (London), 393, 537–544.Google Scholar
First citation Fan, E., Zhang, Z., Minke, W. E., Hou, Z., Verlinde, C. L. M. J. & Hol, W. G. J. (2000). A 105 gain in affinity for pentavalent ligands of E. coli heat-labile enterotoxin by modular structure-based design. J. Am. Chem. Soc. 122, 2663–2664.Google Scholar
First citation Hampele, I. C., D'Arcy, A., Dale, G. E., Kostrewa, D., Nielsen, J., Oefner, C., Page, M. G., Schonfeld, H. J., Stuber, D. & Then, R. L. (1997). Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J. Mol. Biol. 268, 21–30.Google Scholar
First citation Kitov, P. I., Sadowska, J. M., Mulvey, G., Armstrong, G. D., Ling, H., Pannu, N. S., Read, R. J. & Bundle, D. R. (2000). Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature (London), 403, 669–672.Google Scholar
First citation Lacy, D. B. & Stevens, R. C. (1998). Unraveling the structure and modes of action of bacterial toxins. Curr. Opin. Struct. Biol. 8, 778–784.Google Scholar
First citation Merritt, E. A., Sarfaty, S., Feil, I. K. & Hol, W. G. J. (1997). Structural foundation for the design of receptor antagonists targeting E. coli heat-labile enterotoxin. Structure, 5, 1485–1499.Google Scholar
First citation Murray, C. J. & Salomon, J. A. (1998). Modeling the impact of global tuberculosis control strategies. Proc. Natl Acad. Sci. USA, 95, 13881–13886.Google Scholar








































to end of page
to top of page