International Tables for Crystallography (2012). Vol. F, ch. 10.3, pp. 256-261
doi: 10.1107/97809553602060000829

Chapter 10.3. Radiation damage

Contents

  • 10.3. Radiation damage  (pp. 256-261) | html | pdf | chapter contents |
    • 10.3.1. Introduction  (p. 256) | html | pdf |
    • 10.3.2. Cryocrystallography as a mitigation strategy  (pp. 256-257) | html | pdf |
    • 10.3.3. Characteristics of radiation damage at cryotemperatures  (pp. 257-258) | html | pdf |
    • 10.3.4. Understanding radiation damage  (pp. 258-259) | html | pdf |
    • 10.3.5. Mitigating and correcting for radiation damage  (p. 259) | html | pdf |
    • 10.3.6. Using radiation damage  (p. 260) | html | pdf |
    • 10.3.7. Open questions  (p. 260) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 10.3.3.1. Global radiation-damage indicators as a function of dose for four holoferritin crystals  (p. 257) | html | pdf |
      • Fig. 10.3.3.2. Specific structural damage inflicted on a cryocooled crystal of apoferritin during sequential data sets collected at ID14–4, ESRF  (p. 258) | html | pdf |
      • Fig. 10.3.3.3. Photograph of a 400 µm neuraminidase crystal (subtype N9 from avian influenza isolated from a Noddy Tern) that has been irradiated on ID14–4 at the ESRF at 100 K and then allowed to warm to room temperature  (p. 258) | html | pdf |
      • Fig. 10.3.4.1. Microspectrophotometer absorption spectra of native and ascorbate-soaked hen egg-white lysozyme crystals at 100 K  (p. 259) | html | pdf |