Cm No. 8 C1m1 Cs3

UNIQUE AXIS b, CELL CHOICE 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/2, 0); (2)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 (0, 0, 0)+  (1/21/2, 0)+  
4 b 1
(1) xyz(2) x-yz 

I Maximal translationengleiche subgroups

[2] C1 (1P1)1+1/2(a - b), 1/2(a + b), c

II Maximal klassengleiche subgroups

[2] P1a1 (7P1c1)1; 2 + (1/21/2, 0)-a - cba0, 1/4, 0
[2] P1m1 (6)1; 2

[2] c' = 2c

C1c1 (9)<2 + (0, 0, 1)>ab, 2c
I1c1 (9, C1c1)<2 + (0, 0, 1)>a - 2cb, 2c
C1m1 (8)<2>ab, 2c
I1m1 (8, C1m1)<2>a - 2cb, 2c

[3] b' = 3b

braceC1m1 (8)<2>a, 3bc
C1m1 (8)<2 + (0, 2, 0)>a, 3bc0, 1, 0
C1m1 (8)<2 + (0, 4, 0)>a, 3bc0, 2, 0

[3] c' = 3c

C1m1 (8)<2>ab, 3c

[3] a' = a - 2c, c' = 3c

C1m1 (8)<2>a - 2cb, 3c

[3] a' = a - 4c, c' = 3c

C1m1 (8)<2>a - 4cb, 3c

[3] a' = 3a

C1m1 (8)<2>3abc

[p] b' = pb


C1m1 (8)<2 + (0, 2u, 0)>apbc0, u, 0
 p > 2; 0 ≤ u < p
p conjugate subgroups for the prime p

[p] a' = a - 2qc, c' = pc


C1m1 (8)<2>a - 2qcbpc
 p > 1; 0 ≤ q < p
no conjugate subgroups

[p] a' = pa


C1m1 (8)<2>pabc
 p > 2
no conjugate subgroups

I Minimal translationengleiche supergroups

[2] C12/m1 (12); [2] Cmm2 (35); [2] Cmc21 (36); [2] Amm2 (38); [2] Aem2 (39); [2] Fmm2 (42); [2] Imm2 (44); [2] Ima2 (46); [3] P3m1 (156); [3] P31m (157); [3] R3m (160)

II Minimal non-isomorphic klassengleiche supergroups

none
[2] a' = 1/2a, b' = 1/2b  P1m1 (6)








































to end of page
to top of page