ORIGIN CHOICE 1, Origin at -4m 2/n, at -1/4, 1/4, -1/4 from -1
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (9)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x, -y, z | (3) -y + 1/2, x + 1/2, z + 1/2 | (4) y + 1/2, -x + 1/2, z + 1/2 | (5) -x + 1/2, y + 1/2, -z + 1/2 | (6) x + 1/2, -y + 1/2, -z + 1/2 | (7) y, x, -z | (8) -y, -x, -z | (9) -x + 1/2, -y + 1/2, -z + 1/2 | (10) x + 1/2, y + 1/2, -z + 1/2 | (11) y, -x, -z | (12) -y, x, -z | (13) x, -y, z | (14) -x, y, z | (15) -y + 1/2, -x + 1/2, z + 1/2 | (16) y + 1/2, x + 1/2, z + 1/2 |
|
I Maximal translationengleiche subgroups
[2] P-4m2 (115) | 1; 2; 7; 8; 11; 12; 13; 14 |
|
|
[2] P-421c (114) | 1; 2; 5; 6; 11; 12; 15; 16 |
|
|
[2] P42mc (105) | 1; 2; 3; 4; 13; 14; 15; 16 |
| 0, 1/2, 0
|
[2] P42212 (94) | 1; 2; 3; 4; 5; 6; 7; 8 |
|
|
[2] P42/n11 (86, P42/n) | 1; 2; 3; 4; 9; 10; 11; 12 |
|
|
[2] P2/n12/c (68, Ccce) | 1; 2; 7; 8; 9; 10; 15; 16 | a - b, a + b, c
|
|
[2] P2/n21/m1 (59, Pmmn) | 1; 2; 5; 6; 9; 10; 13; 14 |
| 0, 0, 1/4
|
II Maximal klassengleiche subgroups
[3] c' = 3c
| P42/nmc (137) | <2; (3; 5; 9) + (0, 0, 1)> | a, b, 3c | | P42/nmc (137) | <2; 3 + (0, 0, 1); (5; 9) + (0, 0, 3)> | a, b, 3c | 0, 0, 1 | P42/nmc (137) | <2; 3 + (0, 0, 1); (5; 9) + (0, 0, 5)> | a, b, 3c | 0, 0, 2 |
|
- Series of maximal isomorphic subgroups
[p] c' = pc
P42/nmc (137) | <2; 3 + (0, 0, p/2 - 1/2); (5; 9) + (0, 0, p/2 - 1/2 + 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p2] a' = pa, b' = pb
P42/nmc (137) | <2 + (2u, 2v, 0); 3 + (p/2 - 1/2 + u + v, p/2 - 1/2 - u + v, 0); 5 + (p/2 - 1/2 + 2u, p/2 - 1/2, 0); 9 + (p/2 - 1/2 + 2u, p/2 - 1/2 + 2v, 0)> | pa, pb, c | u, v, 0 | | p > 2; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for the prime p |
|
I Minimal translationengleiche supergroups
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] C42/mmc (132, P42/mcm); [2] I4/mmm (139) |
[2] c' = 1/2c P4/nmm (129) |
ORIGIN CHOICE 2, Origin at -1 at n 21 (c, n), at 1/4, -1/4, 1/4 from -4 m 2
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (9)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -x + 1/2, -y + 1/2, z | (3) -y + 1/2, x, z + 1/2 | (4) y, -x + 1/2, z + 1/2 | (5) -x, y + 1/2, -z | (6) x + 1/2, -y, -z | (7) y + 1/2, x + 1/2, -z + 1/2 | (8) -y, -x, -z + 1/2 | (9) -x, -y, -z | (10) x + 1/2, y + 1/2, -z | (11) y + 1/2, -x, -z + 1/2 | (12) -y, x + 1/2, -z + 1/2 | (13) x, -y + 1/2, z | (14) -x + 1/2, y, z | (15) -y + 1/2, -x + 1/2, z + 1/2 | (16) y, x, z + 1/2 |
|
I Maximal translationengleiche subgroups
[2] P-4m2 (115) | 1; 2; 7; 8; 11; 12; 13; 14 |
| 1/4, 3/4, 1/4
|
[2] P-421c (114) | 1; 2; 5; 6; 11; 12; 15; 16 |
| 1/4, 3/4, 1/4
|
[2] P42mc (105) | 1; 2; 3; 4; 13; 14; 15; 16 |
| 1/4, 1/4, 0
|
[2] P42212 (94) | 1; 2; 3; 4; 5; 6; 7; 8 |
| 1/4, 3/4, 1/4
|
[2] P42/n11 (86, P42/n) | 1; 2; 3; 4; 9; 10; 11; 12 |
| 0, 1/2, 0
|
[2] P2/n12/c (68, Ccce) | 1; 2; 7; 8; 9; 10; 15; 16 | a - b, a + b, c
| 0, 1/2, 0
|
[2] P2/n21/m1 (59, Pmmn) | 1; 2; 5; 6; 9; 10; 13; 14 |
|
|
II Maximal klassengleiche subgroups
[3] c' = 3c
| P42/nmc (137) | <2; 5; 9; 3 + (0, 0, 1)> | a, b, 3c | | P42/nmc (137) | <2; 3 + (0, 0, 1); (5; 9) + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | P42/nmc (137) | <2; 3 + (0, 0, 1); (5; 9) + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
- Series of maximal isomorphic subgroups
[p] c' = pc
P42/nmc (137) | <2; 3 + (0, 0, p/2 - 1/2); (5; 9) + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p2] a' = pa, b' = pb
P42/nmc (137) | <2 + (p/2 - 1/2 + 2u, p/2 - 1/2 + 2v, 0); 3 + (p/2 - 1/2 + u + v, -u + v, 0); 5 + (2u, p/2 - 1/2, 0); 9 + (2u, 2v, 0)> | pa, pb, c | u, v, 0 | | p > 2; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for the prime p |
|
I Minimal translationengleiche supergroups
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
[2] C42/mmc (132, P42/mcm); [2] I4/mmm (139) |
[2] c' = 1/2c P4/nmm (129) |