Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates |
|
| |
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) x, y, -z | (5) -y, x - y, -z | (6) -x + y, -x, -z |
|
I Maximal translationengleiche subgroups
[2] P3 (143) | 1; 2; 3 |
|
|
[3] Pm (6, P11m) | 1; 4 |
|
|
II Maximal klassengleiche subgroups
[2] c' = 2c
P-6 (174) | <2; 4> | a, b, 2c | |
P-6 (174) | <2; 4 + (0, 0, 1)> | a, b, 2c | 0, 0, 1/2 |
[3] c' = 3c
| P-6 (174) | <2; 4> | a, b, 3c | | P-6 (174) | <2; 4 + (0, 0, 2)> | a, b, 3c | 0, 0, 1 | P-6 (174) | <2; 4 + (0, 0, 4)> | a, b, 3c | 0, 0, 2 |
|
[3] a' = 3a, b' = 3b
H-6 (174, P-6) | <2; 4> | a - b, a + 2b, c | |
H-6 (174, P-6) | <4; 2 + (1, 0, 0)> | a - b, a + 2b, c | 2/3, 1/3, 0 |
H-6 (174, P-6) | <4; 2 + (1, 1, 0)> | a - b, a + 2b, c | 1/3, 2/3, 0 |
[4] a' = 2a, b' = 2b
| P-6 (174) | <2; 4> | 2a, 2b, c | | P-6 (174) | <4; 2 + (1, -1, 0)> | 2a, 2b, c | 1, 0, 0 | P-6 (174) | <4; 2 + (1, 2, 0)> | 2a, 2b, c | 0, 1, 0 | P-6 (174) | <4; 2 + (2, 1, 0)> | 2a, 2b, c | 1, 1, 0 |
|
- Series of maximal isomorphic subgroups
[p] c' = pc
P-6 (174) | <2; 4 + (0, 0, 2u)> | a, b, pc | 0, 0, u | | p > 2; 0 ≤ u < p p conjugate subgroups for the prime p |
|
[p2] a' = pa, b' = pb
P-6 (174) | <4; 2 + (u + v, -u + 2v, 0)> | pa, pb, c | u, v, 0 | | p > 1; 0 ≤ u < p; 0 ≤ v < p p2 conjugate subgroups for prime p ≡ 2 (mod 3) |
|
[p = q2 + r2 + qr] a' = qa - rb, b' = ra + (q + r)b
P-6 (174) | <4; 2 + (u, -u, 0)> | qa - rb, ra + (q + r)b, c | u, 0, 0 | | q > 0; r > 0; p > 6; 0 ≤ u < p p conjugate subgroups for each pair of q and r |
|
I Minimal translationengleiche supergroups
[2] P6/m (175); [2] P63/m (176); [2] P-6m2 (187); [2] P-6c2 (188); [2] P-62m (189); [2] P-62c (190) |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations