P6/mcc | No. 192 | P6/m2/c2/c | D6h2 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7); (13)
General position
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | |||||||||||||||||||||||||||
|
|
I Maximal translationengleiche subgroups
[2] P-62c (190) | 1; 2; 3; 7; 8; 9; 16; 17; 18; 22; 23; 24 | 0, 0, 1/4 | |||||||||||||||
[2] P-6c2 (188) | 1; 2; 3; 10; 11; 12; 16; 17; 18; 19; 20; 21 | 0, 0, 1/4 | |||||||||||||||
[2] P6cc (184) | 1; 2; 3; 4; 5; 6; 19; 20; 21; 22; 23; 24 | ||||||||||||||||
[2] P622 (177) | 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12 | 0, 0, 1/4 | |||||||||||||||
[2] P6/m11 (175, P6/m) | 1; 2; 3; 4; 5; 6; 13; 14; 15; 16; 17; 18 | ||||||||||||||||
[2] P-3c1 (165) | 1; 2; 3; 7; 8; 9; 13; 14; 15; 19; 20; 21 | ||||||||||||||||
[2] P-31c (163) | 1; 2; 3; 10; 11; 12; 13; 14; 15; 22; 23; 24 | ||||||||||||||||
|
II Maximal klassengleiche subgroups
- Enlarged unit cell
[3] c' = 3c
|
[3] a' = 3a, b' = 3b
|
[4] a' = 2a, b' = 2b
|
- Series of maximal isomorphic subgroups
[p] c' = pc
|
[p2] a' = pa, b' = pb
|
I Minimal translationengleiche supergroups
none |
II Minimal non-isomorphic klassengleiche supergroups
- Additional centring translations
none |
- Decreased unit cell
[2] c' = 1/2c P6/mmm (191) |