I213 No. 199 I213 T5

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2); (3); (5)

General position

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates

 (0, 0, 0)+  (1/21/21/2)+  
24 c 1
(1) xyz(2) -x + 1/2-yz + 1/2(3) -xy + 1/2-z + 1/2(4) x + 1/2-y + 1/2-z
(5) zxy(6) z + 1/2-x + 1/2-y(7) -z + 1/2-xy + 1/2(8) -zx + 1/2-y + 1/2
(9) yzx(10) -yz + 1/2-x + 1/2(11) y + 1/2-z + 1/2-x(12) -y + 1/2-zx + 1/2

I Maximal translationengleiche subgroups

[3] I211 (24I212121)(1; 2; 3; 4)+
brace[4] I13 (146R3)(1; 5; 9)+-a + b, -b + c1/2(a + b + c)
[4] I13 (146R3)(1; 6; 12)+a + b, -b - c1/2(-a + b - c) 0, 1/21/2
[4] I13 (146R3)(1; 7; 10)+-a - bb - c1/2(a - b - c) 1/21/2, 0
[4] I13 (146R3)(1; 8; 11)+a - bb + c1/2(-a - b + c) 1/2, 0, 1/2

II Maximal klassengleiche subgroups

[2] P213 (198)1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12

none

[p3] a' = pa, b' = pb, c' = pc


I213 (199)<2 + (p/2 - 1/2 + 2u, 2vp/2 - 1/2); 3 + (2up/2 - 1/2p/2 - 1/2 + 2w); 5 + (u - w, -u + v, -v + w)>papbpcuvw
 p > 2; 0 ≤ u < p; 0 ≤ v < p; 0 ≤ w < p
p3 conjugate subgroups for the prime p

I Minimal translationengleiche supergroups

[2] Ia-3 (206); [2] I4132 (214); [2] I-43d (220)

II Minimal non-isomorphic klassengleiche supergroups

none
[4] a' = 1/2a, b' = 1/2b, c' = 1/2c  P23 (195)








































to end of page
to top of page