Pnna No. 52 P2/n21/n2/a D2h6


Axes Coordinates Wyckoff positions
4a 4b 4c 4d 8e
I Maximal translationengleiche subgroups
[2] Pnn2 (34) x + (1/4), y, z 4c 4c 2a; 2b 4c 2 × 4c
[2] Pn21a (33) x + (1/4), y, z + (1/4) 4a 4a 4a 4a 2 × 4a
[conventional setting]Pna21 a, c, -b x + (1/4), z + (1/4), -y
[2] P2na (30) x, y + (1/4), z + (1/4) 4c 4c 4c 2a; 2b 2 × 4c
[conventional setting]Pnc2 b, c, a y + (1/4), z + (1/4), x
[2] P2212 (17) x + (1/4), y, z + (1/4) 4e 4e 2a; 2b 2c; 2d 2 × 4e
[conventional setting]P2221 c, a, b z + (1/4), x + (1/4), y
[2] P121/n1 (14) 2a; 2d 2b; 2c 4e 4e 2 × 4e
[2] P2/n11 (13) 2a; 2c 2b; 2d 4g 2e; 2f 2 × 4g
[conventional setting]P12/n1 c, a, b z, x, y
[2] P112/a (13) 2a; 2b 2c; 2d 2e; 2f 4g 2 × 4g
[conventional setting]P12/c1 b, c, a y, z, x
II Maximal klassengleiche subgroups
   Enlarged unit cell, isomorphic
[3] Pnna 3a, b, c (1/3)x, y, z; ±((1/3), 0, 0) 4a; 8e 4b; 8e 4c; 8e 3 × 4d 3 × 8e
[p] Pnna pa, b, c (1/p)x, y, z; +((u/p), 0, 0) 4a; ((p - 1)/2) × 8e 4b; ((p - 1)/2) × 8e 4c; ((p - 1)/2) × 8e p × 4d p × 8e
p = prime > 2; u = 1, . . ., p - 1
[3] Pnna a, 3b, c x, (1/3)y, z; ±(0, (1/3), 0) 4a; 8e 4b; 8e 4c; 8e 4d; 8e 3 × 8e
[p] Pnna a, pb, c x, (1/p)y, z; +(0, (u/p), 0) 4a; ((p - 1)/2) × 8e 4b; ((p - 1)/2) × 8e 4c; ((p - 1)/2) × 8e 4d; ((p - 1)/2) × 8e p × 8e
p = prime > 2; u = 1, . . ., p - 1
[3] Pnna a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 4a; 8e 4b; 8e 3 × 4c 4d; 8e 3 × 8e
[p] Pnna a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) 4a; ((p - 1)/2) × 8e 4b; ((p - 1)/2) × 8e p × 4c 4d; ((p - 1)/2) × 8e p × 8e
p = prime > 2; u = 1, . . ., p - 1


Nonconventional settings
        interchange letters and sequences in Hermann-Mauguin symbols, axes and coordinates:
Pbnn ab; ca abca xyzx
Pncn ac; cb abca xyzx
Pnnb a<-> b a<-> -b x<-> -y
Pcnn a<-> c a<-> -c x<-> -z
Pnan b<-> c b<-> -c y<-> -z










































to end of page
to top of page