Pnna D2h6 mmm Orthorhombic info
No. 52 P2/n21/n2/a Patterson symmetry Pmmm

symmetry group diagram

Origin at -1 on n 1 a

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry operations

(1)  1   (2)  2   1/4, 0, z(3)  2(0, 1/2, 0)   1/4y1/4(4)  2   x1/41/4
(5)  -1   0, 0, 0(6)  a   xy, 0(7)  n(1/2, 0, 1/2)   x1/4z(8)  n(0, 1/21/2)   0, yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
8 e 1
(1) xyz(2) -x + 1/2-yz(3) -x + 1/2y + 1/2-z + 1/2(4) x-y + 1/2-z + 1/2
(5) -x-y-z(6) x + 1/2y-z(7) x + 1/2-y + 1/2z + 1/2(8) -xy + 1/2z + 1/2
0kl : k + l = 2n
h0l : h + l = 2n
hk0 : h = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
4 d  2 . . 
x1/41/4 -x + 1/23/41/4 -x3/43/4x + 1/21/43/4
hkl : h + l = 2n
4 c  . . 2 
1/4, 0, z 1/41/2-z + 1/2 3/4, 0, -z 3/41/2z + 1/2
hkl : h + k + l = 2n
4 b  -1 
0, 0, 1/2 1/2, 0, 1/2 1/21/2, 0 0, 1/2, 0
hkl : hk + l = 2n
4 a  -1 
0, 0, 0 1/2, 0, 0 1/21/21/2 0, 1/21/2
hkl : hk + l = 2n

Symmetry of special projections

Along [001]   p2gm
a' = 1/2a   b' = b   
Origin at 0, 0, z
Along [100]   c2mm
a' = b   b' = c   
Origin at x, 0, 0
Along [010]   c2mm
a' = c   b' = a   
Origin at 1/4y1/4

Maximal non-isomorphic subgroups

I [2] Pnn2 (34)1; 2; 7; 8
  [2] Pn21a (Pna21, 33)1; 3; 6; 8
  [2] P2na (Pnc2, 30)1; 4; 6; 7
  [2] P2212 (P2221, 17)1; 2; 3; 4
  [2] P121/n1 (P21/c, 14)1; 3; 5; 7
  [2] P112/a (P2/c, 13)1; 2; 5; 6
  [2] P2/n11 (P2/c, 13)1; 4; 5; 8
IIa none
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] Pnna (a' = 3a) (52); [3] Pnna (b' = 3b) (52); [3] Pnna (c' = 3c) (52)

Minimal non-isomorphic supergroups

Inone
II[2] Bbmm (Cmcm, 63); [2] Amaa (Cccm, 66); [2] Ccce (68); [2] Imma (74); [2] Pncm (a' = 1/2a) (Pmna, 53); [2] Pcna (b' = 1/2b) (Pban, 50); [2] Pbaa (c' = 1/2c) (Pcca, 54)








































to end of page
to top of page