P4/nnc No. 126 P4/n2/n2/c D4h4


Axes Coordinates Wyckoff positions
origin 1 origin 2 2a 2b 4c 4d 4e 8f
8g 8h 8i 8j 16k
I Maximal translationengleiche subgroups
[2] P-4n2 x + (1/2), y, x + (1/4), 2d 2c 4e 2a; 2b 4h 8i
  (118) z + (1/4) y - (1/4), z 2 × 4e 4f; 4g 8i 8i 2 × 8i
[2] P-42c x + (1/2), x + (1/4), 2b 2d 2a; 2c 2e; 2f 4m 8n
  (112) y, z + (1/4) y - (1/4), z 4k; 4l 8n 4g; 4h 4i; 4j 2 × 8n
[2] P4nc x + (1/4), 2a 2a 4b 4b 2 × 2a 8c
  (104) y + (1/4), z + (1/4) 2 × 4b 8c 8c 8c 2 × 8c
[2] P422 x + (1/4), 1a; 1d 1b; 1c 2e; 2f 4i 2g; 2h 8p
  (89) y + (1/4), z + (1/4) 2 × 4i 4j; 4k 4l; 4m 4n; 4o 2 × 8p
[2] P4/n x + (1/2), 2c 2c 4f 2a; 2b 2 × 2c 4d; 4e
  (85) y, z + (1/4) 2 × 4f 8g 8g 8g 2 × 8g
[2] Pnnn 2a 2c 2b; 2d 4l 4k 4e; 4f
  (48) 2 × 4l 8m 4g; 4i 4h; 4j 2 × 8m
[2] Ccce a - b, (1/2)(x - y), (1/2)(x - y), 4a 4b 8h 8h 8g 8c; 8d
  (68) a + b, c (1/2)(x + y), z (1/2)(x + y), z 2 × 8h 8e; 8f 16i 16i 2 × 16i
II Maximal klassengleiche subgroups
   Enlarged unit cell, isomorphic
[3] P4/nnc a, b, 3c x, y, (1/3)z; x, y, (1/3)z; 2a(b*); 4e 2b(a*); 4e 4c; 8g 4d; 8g 3 × 4e 8f; 16k
±(0, 0, (1/3)) ±(0, 0, (1/3)) 3 × 8g 8h; 16k 8i(j*); 16k 8j(i*); 16k 3 × 16k
[p] P4/nnc a, b, pc x, y, (1/p)z; x, y, (1/p)z; 2a(b† ); ((p - 1)/2) × 4e 2b(a† ); ((p - 1)/2) × 4e 4c; ((p - 1)/2) × 8g 4d; ((p - 1)/2) × 8g p × 4e 8f; ((p - 1)/2) × 16k
+(0, 0, (u/p)) +(0, 0, (u/p)) p × 8g 8h; ((p - 1)/2) × 16k 8i(j† ); 8j(i† ); p × 16k
p = prime; u = 1, . . ., p - 1 ((p - 1)/2) × 16k ((p - 1)/2) × 16k
[9] P4/nnc 3a, 3b, c (1/3)x, (1/3)y, z; (1/3)x, (1/3)y, z; 2a(b*); 8h; 8i(j*) 2b(a*); 8h; 8j(i*) 4c; 8i; 8j; 16k 4d; 2 × 16k 4e; 2 × 16k 8f; 4 × 16k
±((1/3), 0, 0); ±(0, (1/3), 0); 8g; 4 × 16k 3 × 8h; 3 × 16k 3 × 8i(j*); 3 × 8j(i*); 9 × 16k
±((1/3), (1/3), 0); ±((1/3), (2/3), 0) 3 × 16k 3 × 16k
[p2] P4/nnc pa, pb, c (1/p)x, (1/p)y, z; (1/p)x, (1/p)y, z; 2a(b† ); ((p - 1)/2) × 8h; 2b(a† ); ((p - 1)/2) × 8h; 4c; ((p - 1)/2) × 8i; 4d; 4e; 8f;
+((u/p), (v/p), 0) +((u/p), (v/p), 0) ((p - 1)/2) × 8i(j† ); ((p - 1)/2) × 8j(i† ); ((p - 1)/2) × 8j; ((p2 - 1)/4) × 16k ((p2 - 1)/4) × 16k ((p2 - 1)/4) × 16k
p = prime > 2; (((p - 1)(p - 3))/8) × 16k (((p - 1)(p - 3))/8) × 16k (((p - 1)2)/4) × 16k
u, v = 1, . . ., p - 1 8g; ((p2 - 1)/2) × 16k p × 8h; p × 8i(j† ); p × 8j(i† ); p2 × 16k
((p(p - 1))/2) × 16k ((p(p - 1))/2) × 16k ((p(p - 1))/2) × 16k
 * origin 2
 † origin 2 and p = 4n - 1










































to end of page
to top of page