R3c No. 161 C3v6

HEXAGONAL AXES



Axes Coordinates Wyckoff positions
6a 18b
I Maximal translationengleiche subgroups
[2] R3 (146) 2 × 3a 2 × 9b
[3] C1c1 (9) (1/3)(2a + b - 2c), b, c (3/2)x, -(1/2)x + y, x + z 4a 3 × 4a
 conjugate: (1/3)(-a + b - 2c), -a - b, c (3/2)(-x + y), -(1/2)(x + y), -x + y + z
 conjugate: (1/3)(-a - 2b - 2c), a, c -(3/2)y, x - (1/2)y, -y + z
 alternative: 2a + b, b, -(2/3)(2a + b) + (1/3)c (1/2)x + 2z, -(1/2)x + y, 3z
  or -a + b, -a - b, (2/3)(a - b) + (1/3)c (1/2)(-x + y) + 2z, -(1/2)(x + y), 3z
  or -a - 2b, a, (2/3)(a + 2b) + (1/3)c -(1/2)y + 2z, x - (1/2)y, 3z
II Maximal klassengleiche subgroups
   Loss of centring translations
[3] P3c1 (158) 2a; 2b; 2c 3 × 6d
   Enlarged unit cell, isomorphic
[5] R3c -a, -b, 5c -x, -y, (1/5)z; ±(0, 0, (1/5)); ±(0, 0, (2/5)) 5 × 6a 5 × 18b
[p] R3c -a, -b, pc -x, -y, (1/p)z; +(0, 0, (u/p)) p × 6a p × 18b
p = prime = 6n - 1; u = 1, . . ., p - 1
a, b, pc x, y, (1/p)z; +(0, 0, (u/p))
p = prime = 6n + 1; u = 1, . . ., p - 1
[4] R3c -2a, -2b, c -(1/2)x, -(1/2)y, z; +((1/2), 0, 0); (0, (1/2), 0); 6a; 18b 4 × 18b
+((1/2), (1/2), 0)
[p2] R3c -pa, -pb, c -(1/p)x, -(1/p)y, z; +((u/p), (v/p), 0) 6a; ((p2 - 1)/3) × 18b p2 × 18b
p = prime = 3n - 1; u, v = 1, . . ., p - 1
pa, pb, c (1/p)x, (1/p)y, z +((u/p), (v/p), 0)
p = prime = 6n + 1; u, v = 1, . . ., p - 1










































to end of page
to top of page