|
Axes |
Coordinates |
Wyckoff positions |
|
|
|
1a |
1b |
2c |
2d |
2e |
3f |
|
|
|
3g |
4h |
6i |
6j |
6k |
12l |
I Maximal translationengleiche subgroups |
[2] P31m |
|
|
1a |
1a |
2b |
2b |
2 × 1a |
3c |
(157) |
|
|
3c |
2 × 2b |
6d |
6d |
2 × 3c |
2 × 6d |
[2] P312 |
|
|
1a |
1b |
1c; 1e |
1d; 1f |
2g |
3j |
(149) |
|
|
3k |
2h; 2i |
2 × 3j |
2 × 3k |
6l |
2 × 6l |
[2] P-3 |
|
|
1a |
1b |
2d |
2d |
2c |
3e |
(147) |
|
|
3f |
2 × 2d |
6g |
6g |
6g |
2 × 6g |
[3] C12/m1 |
a, a + 2b, c |
x - (1/2)y, (1/2)y, z |
2a |
2c |
4g |
4h |
4i |
2b; 4e |
(12) |
|
|
2d; 4f |
8j |
4g; 8j |
4h; 8j |
4i; 8j |
3 × 8j |
conjugate: |
b, -2a - b, c |
-(1/2)x + y, -(1/2)x, z |
|
|
|
|
|
|
conjugate: |
-a - b, a - b, c |
-(1/2)(x + y), (1/2)(x - y), z |
|
|
|
|
|
|
II Maximal klassengleiche subgroups |
Enlarged unit cell, non-isomorphic |
[2] P-31c |
a, b, 2c |
x, y, (1/2)z; +(0, 0, (1/2)) |
2b |
2a |
4f |
2c; 2d |
4e |
6g |
(163) |
|
|
6h |
2 × 4f |
12i |
2 × 6h |
12i |
2 × 12i |
[2] P-31c |
a, b, 2c |
x, y, (1/2)z + (1/4); +(0, 0, (1/2)) |
2a |
2b |
2c; 2d |
4f |
4e |
6h |
(163) |
|
|
6g |
2 × 4f |
2 × 6h |
12i |
12i |
2 × 12i |
[3] R-3m |
a - b, |
(1/3)(2x - y), (1/3)(x + y), (1/3)z; |
3a; 6c |
3b; 6c |
18f |
18g |
3 × 6c |
9e; 18h |
(166) |
a + 2b, 3c |
±(0, 0, (1/3)) |
9d; 18h |
36i |
18f; 36i |
18g; 36i |
3 × 18h |
3 × 36i |
|
(hexagonal axes) |
|
|
|
|
|
|
[3] R-3m |
2a + b, |
(1/3)(x + y), (1/3)(-x + 2y), (1/3)z; |
3a; 6c |
3b; 6c |
18f |
18g |
3 × 6c |
9e; 18h |
(166) |
-a + b, 3c |
±(0, 0, (1/3)) |
9d; 18h |
36i |
18f; 36i |
18g; 36i |
3 × 18h |
3 × 36i |
|
(hexagonal axes) |
|
|
|
|
|
|
[3] P-3m1 |
a - b, |
(1/3)(2x - y), (1/3)(x + y), z; |
1a; 2d |
1b; 2d |
6g |
6h |
2c; 2 × 2d |
3e; 6i |
(164) |
a + 2b, c |
±((2/3), (1/3), 0) |
3f; 6i |
12j |
6g; 12j |
6h; 12j |
3 × 6i |
3 × 12j |
Enlarged unit cell, isomorphic |
[2] P-31m |
a, b, 2c |
x, y, (1/2)z; +(0, 0, (1/2)) |
1a; 1b |
2e |
2c; 2d |
4h |
2 × 2e |
3f; 3g |
|
|
|
6k |
2 × 4h |
6i; 6j |
12l |
2 × 6k |
2 × 12l |
[2] P-31m |
a, b, 2c |
x, y, (1/2)z + (1/4); +(0, 0, (1/2)) |
2e |
1a; 1b |
4h |
2c; 2d |
2 × 2e |
6k |
|
|
|
3f; 3g |
2 × 4h |
12l |
6i; 6j |
2 × 6k |
2 × 12l |
[3] P-31m |
a, b, 3c |
x, y, (1/3)z; ±(0, 0, (1/3)) |
1a; 2e |
1b; 2e |
2c; 4h |
2d; 4h |
3 × 2e |
3f; 6k |
|
|
|
3g; 6k |
3 × 4h |
6i; 12l |
6j; 12l |
3 × 6k |
3 × 12l |
[p] P-31m |
a, b, pc |
x, y, (1/p)z; +(0, 0, (u/p)) |
1a; ((p - 1)/2) × 2e |
1b; ((p - 1)/2) × 2e |
2c; ((p - 1)/2) × 4h |
2d; ((p - 1)/2) × 4h |
p × 2e |
3f; ((p - 1)/2) × 6k |
|
p = prime > 2; u = 1, . . ., p - 1 |
3g; ((p - 1)/2) × 6k |
p × 4h |
6i; ((p - 1)/2) × 12l |
6j; ((p - 1)/2) × 12l |
p × 6k |
p × 12l |
[4] P-31m |
2a, 2b, c |
(1/2)x, (1/2)y, z; +((1/2), 0, 0); |
1a; 3f |
1b; 3g |
2c; 6i |
2d; 6j |
2e; 6k |
6i; 6k |
|
|
+(0, (1/2), 0); +((1/2), (1/2), 0) |
6j; 6k |
4h; 12l |
2 × 6i; 12l |
2 × 6j; 12l |
2 × 6k; 12l |
4 × 12l |
[p2] P-31m |
pa, pb, c |
(1/p)x, (1/p)y, z; +((u/p), (v/p), 0) |
1a; ((p - 1)/2) × 6i; |
1b; ((p - 1)/2) × 6j; |
2c; |
2d; |
2e; |
3f; ((p - 1)/2) × 6i; |
|
p = prime > 4; u, v = 1, . . ., p - 1 |
((p - 1)/2) × 6k; |
((p - 1)/2) × 6k; |
(p - 1) × 6i; |
(p - 1) × 6j; |
(p - 1) × 6k; |
((p - 1)/2) × 6k; |
|
|
|
(((p - 1)(p - 5))/12) × |
(((p - 1)(p - 5))/12) × |
(((p - 1)(p - 2))/6) × |
(((p - 1)(p - 2))/6) × |
(((p - 1)(p - 2))/6) × |
(((p - 1)2)/4) × 12l |
|
|
|
12l |
12l |
12l |
12l |
12l |
|
|
|
|
3g; ((p - 1)/2) × 6j; |
4h; |
p × 6i; |
p × 6j; |
p × 6k; |
p2 × 12l |
|
|
|
((p - 1)/2) × 6k; |
((p2 - 1)/3) × 12l |
((p(p - 1))/2) × 12l |
((p(p - 1))/2) × 12l |
((p(p - 1))/2) × 12l |
|
|
|
|
(((p - 1)2)/4) × 12l |
|
|
|
|
|