P6 No. 168 C61


Axes Coordinates Wyckoff positions
1a 2b 3c 6d
I Maximal translationengleiche subgroups
[2] P3 (143) 1a 1b; 1c 3d 2 × 3d
[3] P112 (3) 1a 2e 1b; 1c; 1d 3 × 2e
II Maximal klassengleiche subgroups
   Enlarged unit cell, non-isomorphic
[2] P63 (173) a, b, 2c x, y, (1/2)z; +(0, 0, (1/2)) 2a 2 × 2b 6c 2 × 6c
[3] P64 (172) a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 3a 6c 3 × 3b 3 × 6c
[3] P62 (171) a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 3a 6c 3 × 3b 3 × 6c
   Enlarged unit cell, isomorphic
[2] P6 a, b, 2c x, y, (1/2)z; +(0, 0, (1/2)) 2 × 1a 2 × 2b 2 × 3c 2 × 6d
[3] P6 a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 3 × 1a 3 × 2b 3 × 3c 3 × 6d
[p] P6 a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) p × 1a p × 2b p × 3c p × 6d
p = prime; u = 1, . . ., p - 1
[3] P6 2a + b, -a + b, c (1/3)(x + y), (1/3)(-x + 2y), z; ±((1/3), (2/3), 0) 1a; 2b 6d 3c; 6d 3 × 6d
[7] P6 3a + b, -a + 2b, c (1/7)(2x + y), (1/7)(-x + 3y), z; ±((1/7), (3/7), 0); 1a; 6d 2b; 2 × 6d 3c; 3 × 6d 7 × 6d
±((3/7), (2/7), 0); ±((5/7), (1/7), 0)
[7] P6 3a + 2b, -2a + b, c (1/7)(x + 2y), (1/7)(-2x + 3y), z; ±((2/7), (3/7), 0); 1a; 6d 2b; 2 × 6d 3c; 3 × 6d 7 × 6d
±((3/7), (1/7), 0); ±((1/7), (5/7), 0)
[p] P6 qa + rb, (1/p)((q - r)x + ry), (1/p)(-rx + qy), z; 1a; ((p - 1)/6) × 6d 2b; ((p - 1)/3) × 6d 3c; ((p - 1)/2) × 6d p × 6d
-ra +(q - r)b, c +((ur/p), (uq/p), 0)
p = prime = q2 - qr + r2 = 6n + 1;
q, r = 1, 2, . . .; q> r; u = 1, . . ., p - 1
[4] P6 2a, 2b, c (1/2)x, (1/2)y, z; +((1/2), 0, 0); +(0, (1/2), 0); +((1/2), (1/2), 0) 1a; 3c 2b; 6d 2 × 6d 4 × 6d
[p2] P6 pa, pb, c (1/p)x, (1/p)y, z; +((u/p), (v/p), 0) 1a; ((p2 - 1)/6) × 6d 2b; ((p2 - 1)/3) × 6d 3c; ((p2 - 1)/2) × 6d p2 × 6d
p = prime = 6n - 1; u, v = 1, . . ., p - 1










































to end of page
to top of page