Origin on 6
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1; x ≤ (1 + y)/2; y ≤ min(1 - x, x) |
Vertices | 0, 0, 0 | 1/2, 0, 0 | 2/3, 1/3, 0 | 1/2, 1/2, 0 | 0, 0, 1 | 1/2, 0, 1 | 2/3, 1/3, 1 | 1/2, 1/2, 1 |
|
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) 2 0, 0, z | (5) 6- 0, 0, z | (6) 6+ 0, 0, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -x, -y, z | (5) y, -x + y, z | (6) x - y, x, z |
| no conditions |
| | Special: as above, plus
|
| 1/2, 0, z | 0, 1/2, z | 1/2, 1/2, z |
| no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p6 a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 | Along [210] p1m1 a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P3 (143) | 1; 2; 3 |
| | [3] P2 (3) | 1; 4 |
IIb | [2] P63 (c' = 2c) (173); [3] P64 (c' = 3c) (172); [3] P62 (c' = 3c) (171) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P6 (c' = 2c) (168); [3] H6 (a' = 3a, b' = 3b) (P6, 168) |
Minimal non-isomorphic supergroups
I | [2] P6/m (175); [2] P622 (177); [2] P6mm (183); [2] P6cc (184) |