P6 C61 6 Hexagonal info
No. 168 P6 Patterson symmetry P6/m

symmetry group diagram

Origin on 6

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1; x ≤ (1 + y)/2; y ≤ min(1 - xx)
Vertices
0, 0, 0  1/2, 0, 0  2/31/3, 0  1/21/2, 0  
0, 0, 1  1/2, 0, 1  2/31/3, 1  1/21/2, 1  

Symmetry operations

(1)  1   (2)  3+   0, 0, z(3)  3-   0, 0, z
(4)  2   0, 0, z(5)  6-   0, 0, z(6)  6+   0, 0, z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
6 d 1
(1) xyz(2) -yx - yz(3) -x + y-xz
(4) -x-yz(5) y-x + yz(6) x - yxz
no conditions
    Special: as above, plus
3 c  2 . . 
1/2, 0, z 0, 1/2z 1/21/2z
no extra conditions
2 b  3 . . 
1/32/3z 2/31/3z
no extra conditions
1 a  6 . . 
0, 0, z
no extra conditions

Symmetry of special projections

Along [001]   p6
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   p1m1
a' = 1/2(a + 2b)   b' = c   
Origin at x, 0, 0
Along [210]   p1m1
a' = 1/2b   b' = c   
Origin at x1/2x, 0

Maximal non-isomorphic subgroups

I [2] P3 (143)1; 2; 3
  [3] P2 (3)1; 4
IIa none
IIb[2] P63 (c' = 2c) (173); [3] P64 (c' = 3c) (172); [3] P62 (c' = 3c) (171)

Maximal isomorphic subgroups of lowest index

IIc[2] P6 (c' = 2c) (168); [3] H6 (a' = 3ab' = 3b) (P6, 168)

Minimal non-isomorphic supergroups

I[2] P6/m (175); [2] P622 (177); [2] P6mm (183); [2] P6cc (184)
IInone








































to end of page
to top of page