P62 No. 171 C64


P62 P64
Axes Coordinates Wyckoff positions Axes Coordinates
3a 3b 6c
I Maximal translationengleiche subgroups
[2] P32 (145) 3a 3a 3 × 3a [2] P31 (144)
[3] P112 (3) 3 × 1a 1b; 1c; 1d 3 × 2e [3] P112 (3)
II Maximal klassengleiche subgroups
   Enlarged unit cell, non-isomorphic
[2] P61 a, b, 2c x, y, (1/2)z; +(0, 0, (1/2)) 6a 6a 2 × 6a [2] P65 a, b, 2c x, y, (1/2)z; +(0, 0, (1/2))
(169)  (170)
   Enlarged unit cell, isomorphic
[2] P64 a, b, 2c x, y, (1/2)z; +(0, 0, (1/2)) 2 × 3a 2 × 3b 2 × 6c [2] P62 a, b, 2c x, y, (1/2)z; +(0, 0, (1/2))
(172)  (171)
[5] P64 a, b, 5c x, y, (1/5) z; ±(0, 0, (1/5)); 5 × 3a 5 × 3b 5 × 6c [5] P62 a, b, 5c x, y, (1/5) z; ±(0, 0, (1/5));
(172) ±(0, 0, (2/5))  (171) ±(0, 0, (2/5))
[p] P64 a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) p × 3a p × 3b p × 6c [p] P62 a, b, pc x, y, (1/p)z; +(0, 0, (u/p))
(172) p = prime = 3n - 1; u = 1, . . ., p - 1  (171) p = prime = 3n - 1; u = 1, . . ., p - 1
[7] P62 a, b, 7c x, y, (1/7) z; ±(0, 0, (1/7)); 7 × 3a 7 × 3b 7 × 6c [7] P64 a, b, 7c x, y, (1/7) z; ±(0, 0, (1/7));
±(0, 0, (2/7)); ±(0, 0, (3/7)) ±(0, 0, (2/7)); ±(0, 0, (3/7))
[p] P62 a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) p × 3a p × 3b p × 6c [p] P64 a, b, pc x, y, (1/p)z; +(0, 0, (u/p))
p = prime = 6n + 1; u = 1, . . ., p - 1 p = prime = 6n + 1; u = 1, . . ., p - 1
[3] P62 2a+b, (1/3)(x + y), (1/3)(-x + 2y), z; 3a; 6c 3b; 6c 3 × 6c [3] P64 2a + b, (1/3)(x + y), (1/3)(-x + 2y), z;
-a + b, c ±((1/3), (2/3), 0) -a+b, c ±((1/3), (2/3), 0)
[7] P62 3a + b, (1/7)(2x + y), (1/7)(-x + 3y), z; 3a; 3 × 6c 3b; 3 × 6c 7 × 6c [7] P64 3a + b, (1/7)(2x + y), (1/7)(-x + 3y), z;
-a + 2b, c ±((1/7), (3/7), 0); ±((3/7), (2/7), 0); -a + 2b, c ±((1/7), (3/7), 0); ±((3/7), (2/7), 0);
±((5/7), (1/7), 0) ±((5/7), (1/7), 0)
[7] P62 3a+2b, (1/7)(x + 2y), (1/7)(-2x + 3y), z; 3a; 3 × 6c 3b; 3 × 6c 7 × 6c [7] P64 3a+2b, (1/7)(x + 2y), (1/7)(-2x + 3y), z;
-2a+b, c ±((2/7), (3/7), 0); ±((3/7), (1/7), 0); -2a+b, c ±((2/7), (3/7), 0); ±((3/7), (1/7), 0);
±((1/7), (5/7), 0) ±((1/7), (5/7), 0)
[p] P62 qa + rb, (1/p)((q - r)x + ry), 3a; ((p - 1)/2) × 3b; ((p - 1)/2) × p × 6c [p] P64 qa + rb, (1/p)((q - r)x + ry),
-ra +(q - r)b, c (1/p)( - rx + qy), z; +((ur/p), (uq/p), 0) 6c 6c -ra +(q - r)b, c (1/p)( - rx + qy), z; +((ur/p), (uq/p), 0)
p = prime = q2 - qr + r2 = 6n + 1; p = prime = q2 - qr + r2 = 6n + 1;
q, r = 1, 2, . . .; q> r; u = 1, . . ., p - 1 q, r = 1, 2, . . .; q> r; u = 1, . . ., p - 1
[4] P62 2a, 2b, c (1/2)x, (1/2)y, z; +((1/2), 0, 0); 3a; 3 × 3b 2 × 6c 4 × 6c [4] P64 2a, 2b, c (1/2)x, (1/2)y, z; +((1/2), 0, 0);
+(0, (1/2), 0); +((1/2), (1/2), 0) +(0, (1/2), 0); +((1/2), (1/2), 0)
[p2] P62 pa, pb, c (1/p)x, (1/p)y, z; +((u/p), (v/p), 0) 3a; ((p2 - 1)/2) × 3b; ((p2 - 1)/2) × p2 × 6c [p2] P64 pa, pb, c (1/p)x, (1/p)y, z; +((u/p), (v/p), 0)
p = prime = 6n - 1; u, v = 1, . . ., p - 1 6c 6c p = prime = 6n - 1; u, v = 1, . . ., p - 1










































to end of page
to top of page