Origin on 2 on 62
Asymmetric unit | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/3; y ≤ x | ||||||
Vertices |
|
Symmetry operations
(1) 1 | (2) 3+(0, 0, 2/3) 0, 0, z | (3) 3-(0, 0, 1/3) 0, 0, z |
(4) 2 0, 0, z | (5) 6-(0, 0, 2/3) 0, 0, z | (6) 6+(0, 0, 1/3) 0, 0, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||||
General: | |||||||||||
|
| 000l : l = 3n |
Special: as above, plus | ||||||||
|
| hkil : h = 2n + 1 or k = 2n + 1 or l = 3n | ||||||
|
| hkil : l = 3n |
Symmetry of special projections
Along [001] p6 a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = 1/2(a + 2b) b' = c Origin at x, 0, 0 | Along [210] p1m1 a' = 1/2b b' = c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | [2] P32 (145) | 1; 2; 3 | |
[3] P2 (3) | 1; 4 |
IIa | none |
IIb | [2] P61 (c' = 2c) (169) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P64 (c' = 2c) (172); [3] H62 (a' = 3a, b' = 3b) (P62, 171); [7] P62 (c' = 7c) (171) |
Minimal non-isomorphic supergroups
I | [2] P6222 (180) |
II | [3] P6 (c' = 1/3c) (168) |