P6cc No. 184 C6v2


Axes Coordinates Wyckoff positions
2a 4b 6c 12d
I Maximal translationengleiche subgroups
[2] P6 (168) 2 × 1a 2 × 2b 2 × 3c 2 × 6d
[2] P31c (159) 2a 2 × 2b 6c 2 × 6c
[2] P3c1 (158) 2a 2b; 2c 6d 2 × 6d
[3] Ccc2 (37) a, a + 2b, c x - (1/2)y, (1/2)y, z 4a 8d 4b; 2 × 4c 3 × 8d
 conjugate: b, -2a - b, c -(1/2)x + y, -(1/2)x, z
 conjugate: -a - b, a - b, c -(1/2)(x + y), (1/2)(x - y), z
 alternative:
Ccc2 2a + b, b, c (1/2)x, -(1/2)x + y, z 4a 8d 4b; 2 × 4c 3 × 8d
  or a + 2b, -a, c (1/2)y, -x + (1/2)y, z
  or a - b, a + b, c (1/2)(x - y), (1/2)(x + y), z
II Maximal klassengleiche subgroups
   Enlarged unit cell, isomorphic
[3] P6cc a, b, 3c x, y, (1/3)z; ±(0, 0, (1/3)) 3 × 2a 3 × 4b 3 × 6c 3 × 12d
[p] P6cc a, b, pc x, y, (1/p)z; +(0, 0, (u/p)) p × 2a p × 4b p × 6c p × 12d
p = prime > 2; u = 1, . . ., p - 1
[3] P6cc 2a + b, -a + b, c (1/3)(x + y), (1/3)(-x + 2y), z; 2a; 4b 12d 6c; 12d 3 × 12d
±((1/3), (2/3), 0)
[4] P6cc 2a, 2b, c (1/2)x, (1/2)y, z; +((1/2), 0, 0); 2a; 6c 4b; 12d 2 × 12d 4 × 12d
+(0, (1/2), 0); +((1/2), (1/2), 0)
[p2] P6cc pa, pb, c (1/p)x, (1/p)y, z; +((u/p), (v/p), 0) 2a; ((p2 - 1)/6) × 12d 4b; ((p2 - 1)/3) × 12d 6c; ((p2 - 1)/2) × 12d p2 × 12d
p = prime > 4; u, v = 1, . . ., p - 1










































to end of page
to top of page