P6cc C6v2 6mm Hexagonal info
No. 184 P6cc Patterson symmetry P6/mmm

symmetry group diagram

Origin on 6 c c

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ (1 + y)/2; y ≤ min(1 - xx)
Vertices
0, 0, 0  1/2, 0, 0  2/31/3, 0  1/21/2, 0  
0, 0, 1/2  1/2, 0, 1/2  2/31/31/2  1/21/21/2  

Symmetry operations

(1)  1   (2)  3+   0, 0, z(3)  3-   0, 0, z
(4)  2   0, 0, z(5)  6-   0, 0, z(6)  6+   0, 0, z
(7)  c   x-xz(8)  c   x, 2xz(9)  c   2xxz
(10)  c   xxz(11)  c   x, 0, z(12)  c   0, yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
12 d 1
(1) xyz(2) -yx - yz(3) -x + y-xz
(4) -x-yz(5) y-x + yz(6) x - yxz
(7) -y-xz + 1/2(8) -x + yyz + 1/2(9) xx - yz + 1/2
(10) yxz + 1/2(11) x - y-yz + 1/2(12) -x-x + yz + 1/2
hh(-2h)l : l = 2n
h-h0l : l = 2n
000l : l = 2n
    Special: as above, plus
6 c  2 . . 
1/2, 0, z 0, 1/2z 1/21/2z 0, 1/2z + 1/2 1/2, 0, z + 1/2 1/21/2z + 1/2
hkil : l = 2n
4 b  3 . . 
1/32/3z 2/31/3z 1/32/3z + 1/2 2/31/3z + 1/2
hkil : l = 2n
2 a  6 . . 
0, 0, z 0, 0, z + 1/2
hkil : l = 2n

Symmetry of special projections

Along [001]   p6mm
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   p1m1
a' = 1/2(a + 2b)   b' = 1/2c   
Origin at x, 0, 0
Along [210]   p1m1
a' = 1/2b   b' = 1/2c   
Origin at x1/2x, 0

Maximal non-isomorphic subgroups

I [2] P611 (P6, 168)1; 2; 3; 4; 5; 6
  [2] P31c (159)1; 2; 3; 10; 11; 12
  [2] P3c1 (158)1; 2; 3; 7; 8; 9
 [brace][3] P2cc (Ccc2, 37)1; 4; 7; 10
 [3] P2cc (Ccc2, 37)1; 4; 8; 11
 [3] P2cc (Ccc2, 37)1; 4; 9; 12
IIa none
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] P6cc (c' = 3c) (184); [3] H6cc (a' = 3ab' = 3b) (P6cc, 184)

Minimal non-isomorphic supergroups

I[2] P6/mcc (192)
II[2] P6mm (c' = 1/2c) (183)








































to end of page
to top of page