Origin on 6 c c
Asymmetric unit | 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ (1 + y)/2; y ≤ min(1 - x, x) |
Vertices | 0, 0, 0 | 1/2, 0, 0 | 2/3, 1/3, 0 | 1/2, 1/2, 0 | 0, 0, 1/2 | 1/2, 0, 1/2 | 2/3, 1/3, 1/2 | 1/2, 1/2, 1/2 |
|
(1) 1 | (2) 3+ 0, 0, z | (3) 3- 0, 0, z |
(4) 2 0, 0, z | (5) 6- 0, 0, z | (6) 6+ 0, 0, z |
(7) c x, -x, z | (8) c x, 2x, z | (9) c 2x, x, z |
(10) c x, x, z | (11) c x, 0, z | (12) c 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (4); (7)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -y, x - y, z | (3) -x + y, -x, z | (4) -x, -y, z | (5) y, -x + y, z | (6) x - y, x, z | (7) -y, -x, z + 1/2 | (8) -x + y, y, z + 1/2 | (9) x, x - y, z + 1/2 | (10) y, x, z + 1/2 | (11) x - y, -y, z + 1/2 | (12) -x, -x + y, z + 1/2 |
| hh(-2h)l : l = 2n h-h0l : l = 2n 000l : l = 2n
|
| | Special: as above, plus
|
| 1/2, 0, z | 0, 1/2, z | 1/2, 1/2, z | 0, 1/2, z + 1/2 | 1/2, 0, z + 1/2 | 1/2, 1/2, z + 1/2 |
| hkil : l = 2n
|
| 1/3, 2/3, z | 2/3, 1/3, z | 1/3, 2/3, z + 1/2 | 2/3, 1/3, z + 1/2 |
| hkil : l = 2n
|
| | hkil : l = 2n
|
Symmetry of special projections
Along [001] p6mm a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = 1/2(a + 2b) b' = 1/2c Origin at x, 0, 0 | Along [210] p1m1 a' = 1/2b b' = 1/2c Origin at x, 1/2x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P611 (P6, 168) | 1; 2; 3; 4; 5; 6 |
| | [2] P31c (159) | 1; 2; 3; 10; 11; 12 |
| | [2] P3c1 (158) | 1; 2; 3; 7; 8; 9 |
| | [3] P2cc (Ccc2, 37) | 1; 4; 7; 10 | | [3] P2cc (Ccc2, 37) | 1; 4; 8; 11 | | [3] P2cc (Ccc2, 37) | 1; 4; 9; 12 |
|
Maximal isomorphic subgroups of lowest index
IIc | [3] P6cc (c' = 3c) (184); [3] H6cc (a' = 3a, b' = 3b) (P6cc, 184) |
Minimal non-isomorphic supergroups
II | [2] P6mm (c' = 1/2c) (183) |