Move your mouse over or click on the links to get information about each item. Detailed information on the space-group tables is given in Chapter 2.2.

Space-group diagrams: projections of the symmetry elements and a diagram showing a set of equivalent points in the general position

Origin at 2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2
(1)  1   (2)  2   0, 0(3)  b   1/4y(4)  a   x1/4

Generators selected (1); t(1, 0); t(0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions

 General:
4 c 1
(1) xy(2) -x-y(3) -x + 1/2y + 1/2(4) x + 1/2-y + 1/2
h0 : h = 2n
0k : k = 2n
    Special: as above, plus
2 b  2 . . 
1/2, 0 0, 1/2
hk : h + k = 2n
2 a  2 . . 
0, 0 1/21/2
hk : h + k = 2n

Maximal non-isomorphic subgroups


I[2] p1g1 (pg, 4)1; 3
 [2] p11g (pg, 4)1; 4
 [2] p211 (p2, 2)1; 2
IIa none
IIbnone

Maximal isomorphic subgroups of lowest index


IIc[3] p2gg  (a' = 3a or b' = 3b) (8)

Minimal non-isomorphic supergroups


I[2] p4gm (12)
II[2] c2mm (9); [2] p2mg (a' = 1/2 a) (7); [2] p2gm (b' = 1/2 b) (p2mg, 7)








































to end of page
to top of page