Origin at 2
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2 |
(1) 1 | (2) 2 0, 0 | (3) b 1/4, y | (4) a x, 1/4 |
Generators selected (1); t(1, 0); t(0, 1); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
|
| | General:
|
| (1) x, y | (2) -x, -y | (3) -x + 1/2, y + 1/2 | (4) x + 1/2, -y + 1/2 |
| h0 : h = 2n 0k : k = 2n
|
| | Special: as above, plus
|
| | hk : h + k = 2n
|
| | hk : h + k = 2n
|
Maximal non-isomorphic subgroups
I | [2] p1g1 (pg, 4) | 1; 3 |
| [2] p11g (pg, 4) | 1; 4 |
| [2] p211 (p2, 2) | 1; 2 |
Maximal isomorphic subgroups of lowest index
IIc | [3] p2gg (a' = 3a or b' = 3b) (8) |
Minimal non-isomorphic supergroups
II | [2] c2mm (9); [2] p2mg(a' = 1/2 a) (7); [2] p2gm(b' = 1/2 b) (p2mg, 7) |