Move your mouse over or click on the links to get information about each item. Detailed information on the space-group tables is given in Chapter 2.2.
Asymmetric unit | 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, 0, z | (3) m x, 0, z | (4) m 0, y, z |
For (1/2, 1/2, 0)+ set
(1) t(1/2, 1/2, 0) | (2) 2 1/4, 1/4, z | (3) a x, 1/4, z | (4) b 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 0); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||
(0, 0, 0)+ (1/2, 1/2, 0)+ | General: | ||||||||
|
| hkl : h + k = 2n 0kl : k = 2n h0l : h = 2n hk0 : h + k = 2n h00 : h = 2n 0k0 : k = 2n |
Special: as above, plus | |||||||
|
| no extra conditions | |||||
|
| no extra conditions | |||||
|
| hkl : h = 2n | |||||
|
| no extra conditions | |||||
|
| no extra conditions |
Symmetry of special projections
Along [001] c2mm a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = 1/2b b' = c Origin at x, 0, 0 | Along [010] p11m a' = c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | [2] C1m1 (Cm, 8) | (1; 3)+ | |
[2] Cm11 (Cm, 8) | (1; 4)+ | ||
[2] C112 (P2, 3) | (1; 2)+ |
IIa | [2] Pba2 (32) | 1; 2; (3; 4) + (1/2, 1/2, 0) | |
[2] Pbm2 (Pma2, 28) | 1; 3; (2; 4) + (1/2, 1/2, 0) | ||
[2] Pma2 (28) | 1; 4; (2; 3) + (1/2, 1/2, 0) | ||
[2] Pmm2 (25) | 1; 2; 3; 4 |
IIb | [2] Ima2 (c' = 2c) (46); [2] Ibm2 (c' = 2c) (Ima2, 46); [2] Iba2 (c' = 2c) (45); [2] Imm2 (c' = 2c) (44); [2] Ccc2 (c' = 2c) (37); [2] Cmc21 (c' = 2c) (36); [2] Ccm21 (c' = 2c) (Cmc21, 36) |
Maximal isomorphic subgroups of lowest index
IIc | [2] Cmm2 (c' = 2c) (35); [3] Cmm2 (a' = 3a or b' = 3b) (35) |
Minimal non-isomorphic supergroups
I | [2] Cmmm (65); [2] Cmme (67); [2] P4mm (99); [2] P4bm (100); [2] P42cm (101); [2] P42nm (102); [2] P-42m (111); [2] P-421m (113); [3] P6mm (183) |
II | [2] Fmm2 (42); [2] Pmm2 (a' = 1/2a, b' = 1/2b) (25) |