Origin at centre (2/m)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
(1) 1 | (2) 2 0, y, 0 | (3) -1 0, 0, 0 | (4) m x, 0, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, y, -z | (3) -x, -y, -z | (4) x, -y, z |
| no conditions |
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p2mm a' = ap b' = b Origin at 0, 0, z | Along [100] p2mm a' = b b' = cp Origin at x, 0, 0 | Along [010] p2 a' = c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] P1m1 (Pm, 6) | 1; 4 |
| | [2] P121 (P2, 3) | 1; 2 |
| | [2] P-1 (2) | 1; 3 |
IIb | [2] P121/m1 (b' = 2b) (P21/m, 11); [2] P12/c1 (c' = 2c) (P2/c, 13); [2] P12/a1 (a' = 2a) (P2/c, 13); [2] B12/e1 (a' = 2a, c' = 2c) (P2/c, 13); [2] C12/m1 (a' = 2a, b' = 2b) (C2/m, 12); [2] A12/m1 (b' = 2b, c' = 2c) (C2/m, 12); [2] F12/m1 (a' = 2a, b' = 2b, c' = 2c) (C2/m, 12) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P12/m1 (b' = 2b) (P2/m, 10); [2] P12/m1 (c' = 2c or a' = 2a or a' = a + c, c' = -a + c) (P2/m, 10) |
Minimal non-isomorphic supergroups
I | [2] Pmmm (47); [2] Pccm (49); [2] Pmma (51); [2] Pmna (53); [2] Pbam (55); [2] Pnnm (58); [2] Cmmm (65); [2] Cccm (66); [2] P4/m (83); [2] P42/m (84); [3] P6/m (175) |
II | [2] C12/m1 (C2/m, 12); [2] A12/m1 (C2/m, 12); [2] I12/m1 (C2/m, 12) |