P21/c C2h5 2/m Monoclinic info
No. 14 P121/c1 Patterson symmetry P12/m1
UNIQUE AXIS b, CELL CHOICE 1

symmetry group diagram

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry operations

(1)  1   (2)  2(0, 1/2, 0)   0, y1/4(3)  -1   0, 0, 0(4)  c   x1/4z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -xy + 1/2-z + 1/2(3) -x-y-z(4) x-y + 1/2z + 1/2
h0l : l = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
2 d  -1 
1/2, 0, 1/2 1/21/2, 0
hkl : k + l = 2n
2 c  -1 
0, 0, 1/2 0, 1/2, 0
hkl : k + l = 2n
2 b  -1 
1/2, 0, 0 1/21/21/2
hkl : k + l = 2n
2 a  -1 
0, 0, 0 0, 1/21/2
hkl : k + l = 2n

Symmetry of special projections

Along [001]   p2gm
a' = ap   b' = b   
Origin at 0, 0, z
Along [100]   p2gg
a' = b   b' = cp   
Origin at x, 0, 0
Along [010]   p2
a' = 1/2c   b' = a   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] P1c1 (Pc, 7)1; 4
  [2] P1211 (P21, 4)1; 2
  [2] P-1 (2)1; 3
IIa none
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[2] P121/c1 (a' = 2a or a' = 2ac' = 2a + c) (P21/c, 14); [3] P121/c1 (b' = 3b) (P21/c, 14)

Minimal non-isomorphic supergroups

I[2] Pnna (52); [2] Pmna (53); [2] Pcca (54); [2] Pbam (55); [2] Pccn (56); [2] Pbcm (57); [2] Pnnm (58); [2] Pbcn (60); [2] Pbca (61); [2] Pnma (62); [2] Cmce (64)
II[2] A12/m1 (C2/m, 12); [2] C12/c1 (C2/c, 15); [2] I12/c1 (C2/c, 15); [2] P121/m1 (c' = 1/2c) (P21/m, 11); [2] P12/c1 (b' = 1/2b) (P2/c, 13)

UNIQUE AXIS b, DIFFERENT CELL CHOICES

symmetry group diagram

P121/c1

UNIQUE AXIS b, CELL CHOICE 1

cell choice

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -xy + 1/2-z + 1/2(3) -x-y-z(4) x-y + 1/2z + 1/2
h0l : l = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
2 d  -1 
1/2, 0, 1/2 1/21/2, 0
hkl : k + l = 2n
2 c  -1 
0, 0, 1/2 0, 1/2, 0
hkl : k + l = 2n
2 b  -1 
1/2, 0, 0 1/21/21/2
hkl : k + l = 2n
2 a  -1 
0, 0, 0 0, 1/21/2
hkl : k + l = 2n

P121/n1

UNIQUE AXIS b, CELL CHOICE 2

cell choice

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -x + 1/2y + 1/2-z + 1/2(3) -x-y-z(4) x + 1/2-y + 1/2z + 1/2
h0l : h + l = 2n
0k0 : k = 2n
h00 : h = 2n
00l : l = 2n
    Special: as above, plus
2 d  -1 
1/2, 0, 0 0, 1/21/2
hkl : h + k + l = 2n
2 c  -1 
1/2, 0, 1/2 0, 1/2, 0
hkl : h + k + l = 2n
2 b  -1 
0, 0, 1/2 1/21/2, 0
hkl : h + k + l = 2n
2 a  -1 
0, 0, 0 1/21/21/2
hkl : h + k + l = 2n

P121/a1

UNIQUE AXIS b, CELL CHOICE 3

cell choice

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -x + 1/2y + 1/2-z(3) -x-y-z(4) x + 1/2-y + 1/2z
h0l : h = 2n
0k0 : k = 2n
h00 : h = 2n
    Special: as above, plus
2 d  -1 
0, 0, 1/2 1/21/21/2
hkl : h + k = 2n
2 c  -1 
1/2, 0, 0 0, 1/2, 0
hkl : h + k = 2n
2 b  -1 
1/2, 0, 1/2 0, 1/21/2
hkl : h + k = 2n
2 a  -1 
0, 0, 0 1/21/2, 0
hkl : h + k = 2n





P21/c C2h5 2/m Monoclinic info
No. 14 P1121/a Patterson symmetry P112/m
UNIQUE AXIS c, CELL CHOICE 1

symmetry group diagram

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry operations

(1)  1   (2)  2(0, 0, 1/2)   1/4, 0, z(3)  -1   0, 0, 0(4)  a   xy1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -x + 1/2-yz + 1/2(3) -x-y-z(4) x + 1/2y-z + 1/2
hk0 : h = 2n
00l : l = 2n
h00 : h = 2n
    Special: as above, plus
2 d  -1 
1/21/2, 0 0, 1/21/2
hkl : h + l = 2n
2 c  -1 
1/2, 0, 0 0, 0, 1/2
hkl : h + l = 2n
2 b  -1 
0, 1/2, 0 1/21/21/2
hkl : h + l = 2n
2 a  -1 
0, 0, 0 1/2, 0, 1/2
hkl : h + l = 2n

Symmetry of special projections

Along [001]   p2
a' = 1/2a   b' = b   
Origin at 0, 0, z
Along [100]   p2gm
a' = bp   b' = c   
Origin at x, 0, 0
Along [010]   p2gg
a' = c   b' = ap   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] P11a (Pc, 7)1; 4
  [2] P1121 (P21, 4)1; 2
  [2] P-1 (2)1; 3
IIa none
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[2] P1121/a (b' = 2b or a' = a + 2bb' = 2b) (P21/c, 14); [3] P1121/a (c' = 3c) (P21/c, 14)

Minimal non-isomorphic supergroups

I[2] Pnna (52); [2] Pmna (53); [2] Pcca (54); [2] Pbam (55); [2] Pccn (56); [2] Pbcm (57); [2] Pnnm (58); [2] Pbcn (60); [2] Pbca (61); [2] Pnma (62); [2] Cmce (64)
II[2] A112/a (C2/c, 15); [2] B112/m (C2/m, 12); [2] I112/a (C2/c, 15); [2] P1121/m (a' = 1/2a) (P21/m, 11); [2] P112/a (c' = 1/2c) (P2/c, 13)

UNIQUE AXIS c, DIFFERENT CELL CHOICES

symmetry group diagram

P1121/a

UNIQUE AXIS c, CELL CHOICE 1

cell choice

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -x + 1/2-yz + 1/2(3) -x-y-z(4) x + 1/2y-z + 1/2
hk0 : h = 2n
00l : l = 2n
h00 : h = 2n
    Special: as above, plus
2 d  -1 
1/21/2, 0 0, 1/21/2
hkl : h + l = 2n
2 c  -1 
1/2, 0, 0 0, 0, 1/2
hkl : h + l = 2n
2 b  -1 
0, 1/2, 0 1/21/21/2
hkl : h + l = 2n
2 a  -1 
0, 0, 0 1/2, 0, 1/2
hkl : h + l = 2n

P1121/n

UNIQUE AXIS c, CELL CHOICE 2

cell choice

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -x + 1/2-y + 1/2z + 1/2(3) -x-y-z(4) x + 1/2y + 1/2-z + 1/2
hk0 : h + k = 2n
00l : l = 2n
h00 : h = 2n
0k0 : k = 2n
    Special: as above, plus
2 d  -1 
0, 1/2, 0 1/2, 0, 1/2
hkl : h + k + l = 2n
2 c  -1 
1/21/2, 0 0, 0, 1/2
hkl : h + k + l = 2n
2 b  -1 
1/2, 0, 0 0, 1/21/2
hkl : h + k + l = 2n
2 a  -1 
0, 0, 0 1/21/21/2
hkl : h + k + l = 2n

P1121/b

UNIQUE AXIS c, CELL CHOICE 3

cell choice

Origin at -1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 e 1
(1) xyz(2) -x-y + 1/2z + 1/2(3) -x-y-z(4) xy + 1/2-z + 1/2
hk0 : k = 2n
00l : l = 2n
0k0 : k = 2n
    Special: as above, plus
2 d  -1 
1/2, 0, 0 1/21/21/2
hkl : k + l = 2n
2 c  -1 
0, 1/2, 0 0, 0, 1/2
hkl : k + l = 2n
2 b  -1 
1/21/2, 0 1/2, 0, 1/2
hkl : k + l = 2n
2 a  -1 
0, 0, 0 0, 1/21/2
hkl : k + l = 2n








































to end of page
to top of page