Origin on m m 2
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
(1) 1 | (2) 2 0, 0, z | (3) m x, 0, z | (4) m 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) x, -y, z | (4) -x, y, z |
| no conditions |
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p2mm a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = b b' = c Origin at x, 0, 0 | Along [010] p11m a' = c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] P1m1 (Pm, 6) | 1; 3 |
| | [2] Pm11 (Pm, 6) | 1; 4 |
| | [2] P112 (P2, 3) | 1; 2 |
IIb | [2] Pma2 (a' = 2a) (28); [2] Pbm2 (b' = 2b) (Pma2, 28); [2] Pcc2 (c' = 2c) (27); [2] Pmc21 (c' = 2c) (26); [2] Pcm21 (c' = 2c) (Pmc21, 26); [2] Aem2 (b' = 2b, c' = 2c) (39); [2] Amm2 (b' = 2b, c' = 2c) (38); [2] Bme2 (a' = 2a, c' = 2c) (Aem2, 39); [2] Bmm2 (a' = 2a, c' = 2c) (Amm2, 38); [2] Cmm2 (a' = 2a, b' = 2b) (35); [2] Fmm2 (a' = 2a, b' = 2b, c' = 2c) (42) |
Maximal isomorphic subgroups of lowest index
IIc | [2] Pmm2 (a' = 2a or b' = 2b) (25); [2] Pmm2 (c' = 2c) (25) |
Minimal non-isomorphic supergroups
I | [2] Pmmm (47); [2] Pmma (51); [2] Pmmn (59); [2] P4mm (99); [2] P42mc (105); [2] P-4m2 (115) |
II | [2] Cmm2 (35); [2] Amm2 (38); [2] Bmm2 (Amm2, 38); [2] Imm2 (44) |