Origin on n 1 2
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2 |
Symmetry operations
(1) 1 | (2) 2 0, 0, z | (3) c x, 1/4, z | (4) n(0, 1/2, 1/2) 0, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||
General: | |||||||||
|
| 0kl : k + l = 2n h0l : l = 2n 0k0 : k = 2n 00l : l = 2n |
Special: as above, plus | |||||||
|
| hkl : k + l = 2n | |||||
|
| hkl : k + l = 2n |
Symmetry of special projections
Along [001] p2gm a' = a b' = b Origin at 0, 0, z | Along [100] c1m1 a' = b b' = c Origin at x, 0, 0 | Along [010] p11m a' = 1/2c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | [2] P1c1 (Pc, 7) | 1; 3 | |
[2] Pn11 (Pc, 7) | 1; 4 | ||
[2] P112 (P2, 3) | 1; 2 |
IIa | none |
IIb | [2] Pnn2 (a' = 2a) (34) |
Maximal isomorphic subgroups of lowest index
IIc | [2] Pnc2 (a' = 2a) (30); [3] Pnc2 (b' = 3b) (30); [3] Pnc2 (c' = 3c) (30) |
Minimal non-isomorphic supergroups
I | [2] Pban (50); [2] Pnna (52); [2] Pmna (53); [2] Pbcn (60) |
II | [2] Ccc2 (37); [2] Amm2 (38); [2] Bbe2 (Aea2, 41); [2] Ima2 (46); [2] Pcc2 (b' = 1/2b) (27); [2] Pbm2 (c' = 1/2c) (Pma2, 28) |