Pna21 C2v9 mm2 Orthorhombic info
No. 33 Pna21 Patterson symmetry Pmmm

symmetry group diagram

Origin on 1 1 21

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry operations

(1)  1   (2)  2(0, 0, 1/2)   0, 0, z(3)  a   x1/4z(4)  n(0, 1/21/2)   1/4yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 a 1
(1) xyz(2) -x-yz + 1/2(3) x + 1/2-y + 1/2z(4) -x + 1/2y + 1/2z + 1/2
0kl : k + l = 2n
h0l : h = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n

Symmetry of special projections

Along [001]   p2gg
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   c1m1
a' = b   b' = c   
Origin at x1/4, 0
Along [010]   p11g
a' = c   b' = 1/2a   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] P1a1 (Pc, 7)1; 3
  [2] Pn11 (Pc, 7)1; 4
  [2] P1121 (P21, 4)1; 2
IIa none
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] Pna21 (a' = 3a) (33); [3] Pna21 (b' = 3b) (33); [3] Pna21 (c' = 3c) (33)

Minimal non-isomorphic supergroups

I[2] Pnna (52); [2] Pccn (56); [2] Pbcn (60); [2] Pnma (62)
II[2] Ccm21 (Cmc21, 36); [2] Ama2 (40); [2] Bbe2 (Aea2, 41); [2] Ima2 (46); [2] Pca21 (b' = 1/2b) (29); [2] Pnm21 (a' = 1/2a) (Pmn21, 31); [2] Pba2 (c' = 1/2c) (32)








































to end of page
to top of page