Origin on 1 1 2
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
Symmetry operations
(1) 1 | (2) 2 0, 0, z | (3) n(1/2, 0, 1/2) x, 1/4, z | (4) n(0, 1/2, 1/2) 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Positions
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions | |||||||
General: | |||||||||
|
| 0kl : k + l = 2n h0l : h + l = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n |
Special: as above, plus | |||||||
|
| hkl : h + k + l = 2n | |||||
|
| hkl : h + k + l = 2n |
Symmetry of special projections
Along [001] p2gg a' = a b' = b Origin at 0, 0, z | Along [100] c1m1 a' = b b' = c Origin at x, 0, 0 | Along [010] c11m a' = c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | [2] P1n1 (Pc, 7) | 1; 3 | |
[2] Pn11 (Pc, 7) | 1; 4 | ||
[2] P112 (P2, 3) | 1; 2 |
IIa | none |
IIb | [2] Fdd2 (a' = 2a, b' = 2b, c' = 2c) (43) |
Maximal isomorphic subgroups of lowest index
IIc | [3] Pnn2 (a' = 3a or b' = 3b) (34); [3] Pnn2 (c' = 3c) (34) |
Minimal non-isomorphic supergroups
I | [2] Pnnn (48); [2] Pnna (52); [2] Pnnm (58); [2] P42nm (102); [2] P4nc (104); [2] P-4n2 (118) |
II | [2] Ccc2 (37); [2] Ama2 (40); [2] Bbm2 (Ama2, 40); [2] Imm2 (44); [2] Pnc2 (a' = 1/2a) (30); [2] Pcn2 (b' = 1/2b) (Pnc2, 30); [2] Pba2 (c' = 1/2c) (32) |