Pnn2 C2v10 mm2 Orthorhombic info
No. 34 Pnn2 Patterson symmetry Pmmm

symmetry group diagram

Origin on 1 1 2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry operations

(1)  1   (2)  2   0, 0, z(3)  n(1/2, 0, 1/2)   x1/4z(4)  n(0, 1/21/2)   1/4yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 General:
4 c 1
(1) xyz(2) -x-yz(3) x + 1/2-y + 1/2z + 1/2(4) -x + 1/2y + 1/2z + 1/2
0kl : k + l = 2n
h0l : h + l = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
2 b  . . 2 
0, 1/2z 1/2, 0, z + 1/2
hkl : h + k + l = 2n
2 a  . . 2 
0, 0, z 1/21/2z + 1/2
hkl : h + k + l = 2n

Symmetry of special projections

Along [001]   p2gg
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   c1m1
a' = b   b' = c   
Origin at x, 0, 0
Along [010]   c11m
a' = c   b' = a   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] P1n1 (Pc, 7)1; 3
  [2] Pn11 (Pc, 7)1; 4
  [2] P112 (P2, 3)1; 2
IIa none
IIb[2] Fdd2 (a' = 2ab' = 2bc' = 2c) (43)

Maximal isomorphic subgroups of lowest index

IIc[3] Pnn2 (a' = 3a or b' = 3b) (34); [3] Pnn2 (c' = 3c) (34)

Minimal non-isomorphic supergroups

I[2] Pnnn (48); [2] Pnna (52); [2] Pnnm (58); [2] P42nm (102); [2] P4nc (104); [2] P-4n2 (118)
II[2] Ccc2 (37); [2] Ama2 (40); [2] Bbm2 (Ama2, 40); [2] Imm2 (44); [2] Pnc2 (a' = 1/2a) (30); [2] Pcn2 (b' = 1/2b) (Pnc2, 30); [2] Pba2 (c' = 1/2c) (32)








































to end of page
to top of page