Ccc2 C2v13 mm2 Orthorhombic info
No. 37 Ccc2 Patterson symmetry Cmmm

symmetry group diagram

Origin on c c 2

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry operations

For (0, 0, 0)+ set

(1)  1   (2)  2   0, 0, z(3)  c   x, 0, z(4)  c   0, yz

For (1/21/2, 0)+ set

(1)  t(1/21/2, 0)   (2)  2   1/41/4z(3)  n(1/2, 0, 1/2)   x1/4z(4)  n(0, 1/21/2)   1/4yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/2, 0); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 (0, 0, 0)+  (1/21/2, 0)+  General:
8 d 1
(1) xyz(2) -x-yz(3) x-yz + 1/2(4) -xyz + 1/2
hkl : h + k = 2n
0kl : kl = 2n
h0l : hl = 2n
hk0 : h + k = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
4 c  . . 2 
1/41/4z 1/43/4z + 1/2
hkl : k + l = 2n
4 b  . . 2 
0, 1/2z 0, 1/2z + 1/2
hkl : l = 2n
4 a  . . 2 
0, 0, z 0, 0, z + 1/2
hkl : l = 2n

Symmetry of special projections

Along [001]   c2mm
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   p1m1
a' = 1/2b   b' = 1/2c   
Origin at x, 0, 0
Along [010]   p11m
a' = 1/2c   b' = 1/2a   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] C1c1 (Cc, 9)(1; 3)+
  [2] Cc11 (Cc, 9)(1; 4)+
  [2] C112 (P2, 3)(1; 2)+
IIa [2] Pnn2 (34)1; 2; (3; 4) + (1/21/2, 0)
  [2] Pnc2 (30)1; 3; (2; 4) + (1/21/2, 0)
  [2] Pcn2 (Pnc2, 30)1; 4; (2; 3) + (1/21/2, 0)
  [2] Pcc2 (27)1; 2; 3; 4
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] Ccc2 (a' = 3a or b' = 3b) (37); [3] Ccc2 (c' = 3c) (37)

Minimal non-isomorphic supergroups

I[2] Cccm (66); [2] Ccce (68); [2] P4cc (103); [2] P4nc (104); [2] P42mc (105); [2] P42bc (106); [2] P-42c (112); [2] P-421c (114); [3] P6cc (184)
II[2] Fmm2 (42); [2] Pcc2 (a' = 1/2a, b' = 1/2b) (27); [2] Cmm2 (c' = 1/2c) (35)








































to end of page
to top of page