Imm2 C2v20 mm2 Orthorhombic info
No. 44 Imm2 Patterson symmetry Immm

symmetry group diagram

Origin on m m 2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry operations

For (0, 0, 0)+ set

(1)  1   (2)  2   0, 0, z(3)  m   x, 0, z(4)  m   0, yz

For (1/21/21/2)+ set

(1)  t(1/21/21/2)   (2)  2(0, 0, 1/2)   1/41/4z(3)  n(1/2, 0, 1/2)   x1/4z(4)  n(0, 1/21/2)   1/4yz

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/21/21/2); (2); (3)

Positions

Multiplicity, Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
 (0, 0, 0)+  (1/21/21/2)+  General:
8 e 1
(1) xyz(2) -x-yz(3) x-yz(4) -xyz
hkl : h + k + l = 2n
0kl : k + l = 2n
h0l : h + l = 2n
hk0 : h + k = 2n
h00 : h = 2n
0k0 : k = 2n
00l : l = 2n
    Special: as above, plus
4 d  m . . 
0, yz 0, -yz
no extra conditions
4 c  . m . 
x, 0, z -x, 0, z
no extra conditions
2 b  m m 2 
0, 1/2z
no extra conditions
2 a  m m 2 
0, 0, z
no extra conditions

Symmetry of special projections

Along [001]   c2mm
a' = a   b' = b   
Origin at 0, 0, z
Along [100]   c1m1
a' = b   b' = c   
Origin at x, 0, 0
Along [010]   c11m
a' = c   b' = a   
Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] I1m1 (Cm, 8)(1; 3)+
  [2] Im11 (Cm, 8)(1; 4)+
  [2] I112 (C2, 5)(1; 2)+
IIa [2] Pnn2 (34)1; 2; (3; 4) + (1/21/21/2)
  [2] Pnm21 (Pmn21, 31)1; 3; (2; 4) + (1/21/21/2)
  [2] Pmn21 (31)1; 4; (2; 3) + (1/21/21/2)
  [2] Pmm2 (25)1; 2; 3; 4
IIbnone

Maximal isomorphic subgroups of lowest index

IIc[3] Imm2 (a' = 3a or b' = 3b) (44); [3] Imm2 (c' = 3c) (44)

Minimal non-isomorphic supergroups

I[2] Immm (71); [2] Imma (74); [2] I4mm (107); [2] I41md (109); [2] I-4m2 (119)
II[2] Cmm2 (c' = 1/2c) (35); [2] Amm2 (a' = 1/2a) (38); [2] Bmm2 (b' = 1/2b) (Amm2, 38)








































to end of page
to top of page