Origin at -1 on 1 c a
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 1/4, 0, z | (3) 2 0, y, 1/4 | (4) 2(1/2, 0, 0) x, 0, 1/4 |
(5) -1 0, 0, 0 | (6) a x, y, 0 | (7) c x, 0, z | (8) c 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x + 1/2, -y, z | (3) -x, y, -z + 1/2 | (4) x + 1/2, -y, -z + 1/2 | (5) -x, -y, -z | (6) x + 1/2, y, -z | (7) x, -y, z + 1/2 | (8) -x + 1/2, y, z + 1/2 |
| 0kl : l = 2n h0l : l = 2n hk0 : h = 2n h00 : h = 2n 00l : l = 2n
|
| | Special: as above, plus
|
| 1/4, 1/2, z | 3/4, 1/2, -z + 1/2 | 3/4, 1/2, -z | 1/4, 1/2, z + 1/2 |
| hkl : l = 2n
|
| 1/4, 0, z | 3/4, 0, -z + 1/2 | 3/4, 0, -z | 1/4, 0, z + 1/2 |
| hkl : l = 2n
|
| 0, y, 1/4 | 1/2, -y, 1/4 | 0, -y, 3/4 | 1/2, y, 3/4 |
| hkl : h + l = 2n
|
| 0, 1/2, 0 | 1/2, 1/2, 0 | 0, 1/2, 1/2 | 1/2, 1/2, 1/2 |
| hkl : h, l = 2n
|
| 0, 0, 0 | 1/2, 0, 0 | 0, 0, 1/2 | 1/2, 0, 1/2 |
| hkl : h, l = 2n
|
Symmetry of special projections
Along [001] p2mm a' = 1/2a b' = b Origin at 0, 0, z | Along [100] p2mm a' = b b' = 1/2c Origin at x, 0, 0 | Along [010] p2gm a' = 1/2c b' = a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] Pc2a (Pba2, 32) | 1; 3; 6; 8 |
| | [2] P21ca (Pca21, 29) | 1; 4; 6; 7 |
| | [2] Pcc2 (27) | 1; 2; 7; 8 |
| | [2] P2122 (P2221, 17) | 1; 2; 3; 4 |
| | [2] P21/c11 (P21/c, 14) | 1; 4; 5; 8 |
| | [2] P112/a (P2/c, 13) | 1; 2; 5; 6 |
| | [2] P12/c1 (P2/c, 13) | 1; 3; 5; 7 |
IIb | [2] Pnca (b' = 2b) (Pbcn, 60); [2] Pccn (b' = 2b) (56); [2] Pncn (b' = 2b) (Pnna, 52) |
Maximal isomorphic subgroups of lowest index
IIc | [2] Pcca (b' = 2b) (54); [3] Pcca (a' = 3a) (54); [3] Pcca (c' = 3c) (54) |
Minimal non-isomorphic supergroups
II | [2] Aema (Cmce, 64); [2] Bmem (Cmme, 67); [2] Ccce (68); [2] Ibca (73); [2] Pccm (a' = 1/2a) (49); [2] Pmma (c' = 1/2c) (51) |