Origin at centre (2/m)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 2(0, 1/2, 0) 1/4, y, 0 | (4) 2(1/2, 0, 0) x, 1/4, 0 |
(5) -1 0, 0, 0 | (6) m x, y, 0 | (7) a x, 1/4, z | (8) b 1/4, y, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -x + 1/2, y + 1/2, -z | (4) x + 1/2, -y + 1/2, -z | (5) -x, -y, -z | (6) x, y, -z | (7) x + 1/2, -y + 1/2, z | (8) -x + 1/2, y + 1/2, z |
| 0kl : k = 2n h0l : h = 2n h00 : h = 2n 0k0 : k = 2n
|
| | Special: as above, plus
|
| x, y, 1/2 | -x, -y, 1/2 | -x + 1/2, y + 1/2, 1/2 | x + 1/2, -y + 1/2, 1/2 |
| no extra conditions |
| x, y, 0 | -x, -y, 0 | -x + 1/2, y + 1/2, 0 | x + 1/2, -y + 1/2, 0 |
| no extra conditions |
| 0, 1/2, z | 1/2, 0, -z | 0, 1/2, -z | 1/2, 0, z |
| hkl : h + k = 2n
|
| 0, 0, z | 1/2, 1/2, -z | 0, 0, -z | 1/2, 1/2, z |
| hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
Symmetry of special projections
Along [001] p2gg a' = a b' = b Origin at 0, 0, z | Along [100] p2mm a' = 1/2b b' = c Origin at x, 0, 0 | Along [010] p2mm a' = c b' = 1/2a Origin at 0, y, 0 |
Maximal non-isomorphic subgroups
I | | [2] Pba2 (32) | 1; 2; 7; 8 |
| | [2] Pb21m (Pmc21, 26) | 1; 3; 6; 8 |
| | [2] P21am (Pmc21, 26) | 1; 4; 6; 7 |
| | [2] P21212 (18) | 1; 2; 3; 4 |
| | [2] P121/a1 (P21/c, 14) | 1; 3; 5; 7 |
| | [2] P21/b11 (P21/c, 14) | 1; 4; 5; 8 |
| | [2] P112/m (P2/m, 10) | 1; 2; 5; 6 |
IIb | [2] Pnam (c' = 2c) (Pnma, 62); [2] Pbnm (c' = 2c) (Pnma, 62); [2] Pnnm (c' = 2c) (58) |
Maximal isomorphic subgroups of lowest index
IIc | [2] Pbam (c' = 2c) (55); [3] Pbam (a' = 3a or b' = 3b) (55) |
Minimal non-isomorphic supergroups
I | [2] P4/mbm (127); [2] P42/mbc (135) |
II | [2] Aeam (Cmce, 64); [2] Bbem (Cmce, 64); [2] Cmmm (65); [2] Ibam (72); [2] Pbmm (a' = 1/2a) (Pmma, 51); [2] Pmam (b' = 1/2b) (Pmma, 51) |