Origin on 2 on 42
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
(1) 1 | (2) 2 0, 0, z | (3) 4+(0, 0, 1/2) 0, 0, z | (4) 4-(0, 0, 1/2) 0, 0, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z + 1/2 | (4) y, -x, z + 1/2 |
| 00l : l = 2n
|
| | Special: as above, plus
|
| 0, 1/2, z | 1/2, 0, z + 1/2 |
| hkl : h + k + l = 2n
|
| 1/2, 1/2, z | 1/2, 1/2, z + 1/2 |
| hkl : l = 2n
|
| | hkl : l = 2n
|
Symmetry of special projections
Along [001] p4 a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = b b' = c Origin at x, 0, 0 | Along [110] p1m1 a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
IIb | [2] P43 (c' = 2c) (78); [2] P41 (c' = 2c) (76); [2] F41 (a' = 2a, b' = 2b, c' = 2c) (I41, 80) |
Maximal isomorphic subgroups of lowest index
IIc | [2] C42 (a' = 2a, b' = 2b) (P42, 77); [3] P42 (c' = 3c) (77) |
Minimal non-isomorphic supergroups
I | [2] P42/m (84); [2] P42/n (86); [2] P4222 (93); [2] P42212 (94); [2] P42cm (101); [2] P42nm (102); [2] P42mc (105); [2] P42bc (106) |
II | [2] I4 (79); [2] P4 (c' = 1/2c) (75) |