Origin at -4
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1 |
(1) 1 | (2) 2 0, 0, z | (3) -4+ 0, 0, z; 0, 0, 0 | (4) -4- 0, 0, z; 0, 0, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) y, -x, -z | (4) -y, x, -z |
| no conditions |
| | Special: as above, plus
|
| | hk0 : h + k = 2n
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p4 a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = b b' = c Origin at x, 0, 0 | Along [110] p1m1 a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
IIb | [2] F-4 (a' = 2a, b' = 2b, c' = 2c) (I-4, 82) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P-4 (c' = 2c) (81); [2] C-4 (a' = 2a, b' = 2b) (P-4, 81) |
Minimal non-isomorphic supergroups
I | [2] P4/m (83); [2] P42/m (84); [2] P4/n (85); [2] P42/n (86); [2] P-42m (111); [2] P-42c (112); [2] P-421m (113); [2] P-421c (114); [2] P-4m2 (115); [2] P-4c2 (116); [2] P-4b2 (117); [2] P-4n2 (118) |