Origin at -4
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
For (0, 0, 0)+ set
(1) 1 | (2) 2 0, 0, z | (3) -4+ 0, 0, z; 0, 0, 0 | (4) -4- 0, 0, z; 0, 0, 0 |
For (1/2, 1/2, 1/2)+ set
(1) t(1/2, 1/2, 1/2) | (2) 2(0, 0, 1/2) 1/4, 1/4, z | (3) -4+ 1/2, 0, z; 1/2, 0, 1/4 | (4) -4- 0, 1/2, z; 0, 1/2, 1/4 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2); (3)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| (0, 0, 0)+ (1/2, 1/2, 1/2)+ | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) y, -x, -z | (4) -y, x, -z |
| hkl : h + k + l = 2n hk0 : h + k = 2n 0kl : k + l = 2n hhl : l = 2n 00l : l = 2n h00 : h = 2n
|
| | Special: as above, plus
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p4 a' = 1/2(a - b) b' = 1/2(a + b) Origin at 0, 0, z | Along [100] c1m1 a' = b b' = c Origin at x, 0, 0 | Along [110] p1m1 a' = 1/2(-a + b) b' = 1/2c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
IIa | | [2] P-4 (81) | 1; 2; 3; 4 |
| | [2] P-4 (81) | 1; 2; (3; 4) + (1/2, 1/2, 1/2) |
Maximal isomorphic subgroups of lowest index
IIc | [3] I-4 (c' = 3c) (82); [5] I-4 (a' = a + 2b, b' = -2a + b or a' = a - 2b, b' = 2a + b) (82) |
Minimal non-isomorphic supergroups
I | [2] I4/m (87); [2] I41/a (88); [2] I-4m2 (119); [2] I-4c2 (120); [2] I-42m (121); [2] I-42d (122) |
II | [2] C-4 (c' = 1/2c) (P-4, 81) |