Origin at centre (4/m)
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 4+ 0, 0, z | (4) 4- 0, 0, z |
(5) -1 0, 0, 0 | (6) m x, y, 0 | (7) -4+ 0, 0, z; 0, 0, 0 | (8) -4- 0, 0, z; 0, 0, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z | (4) y, -x, z | (5) -x, -y, -z | (6) x, y, -z | (7) y, -x, -z | (8) -y, x, -z |
| no conditions |
| | Special: as above, plus
|
| x, y, 1/2 | -x, -y, 1/2 | -y, x, 1/2 | y, -x, 1/2 |
| no extra conditions |
| x, y, 0 | -x, -y, 0 | -y, x, 0 | y, -x, 0 |
| no extra conditions |
| 0, 1/2, z | 1/2, 0, z | 0, 1/2, -z | 1/2, 0, -z |
| hkl : h + k = 2n
|
| | no extra conditions |
| | no extra conditions |
| | hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p4 a' = a b' = b Origin at 0, 0, z | Along [100] p2mm a' = b b' = c Origin at x, 0, 0 | Along [110] p2mm a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P-4 (81) | 1; 2; 7; 8 |
| | [2] P4 (75) | 1; 2; 3; 4 |
| | [2] P2/m (10) | 1; 2; 5; 6 |
IIb | [2] P42/m (c' = 2c) (84); [2] C4/e (a' = 2a, b' = 2b) (P4/n, 85); [2] F4/m (a' = 2a, b' = 2b, c' = 2c) (I4/m, 87) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P4/m (c' = 2c) (83); [2] C4/m (a' = 2a, b' = 2b) (P4/m, 83) |
Minimal non-isomorphic supergroups
I | [2] P4/mmm (123); [2] P4/mcc (124); [2] P4/mbm (127); [2] P4/mnc (128) |