Origin at -1 on n, at 1/4, -1/4, 0 from -4
Asymmetric unit | -1/4 ≤ x ≤ 1/4; -1/4 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 1/4, 1/4, z | (3) 4+ 1/4, 1/4, z | (4) 4- 1/4, 1/4, z |
(5) -1 0, 0, 0 | (6) n(1/2, 1/2, 0) x, y, 0 | (7) -4+ 1/4, -1/4, z; 1/4, -1/4, 0 | (8) -4- -1/4, 1/4, z; -1/4, 1/4, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x + 1/2, -y + 1/2, z | (3) -y + 1/2, x, z | (4) y, -x + 1/2, z | (5) -x, -y, -z | (6) x + 1/2, y + 1/2, -z | (7) y + 1/2, -x, -z | (8) -y, x + 1/2, -z |
| hk0 : h + k = 2n h00 : h = 2n
|
| | Special: as above, plus
|
| 1/4, 3/4, z | 3/4, 1/4, z | 3/4, 1/4, -z | 1/4, 3/4, -z |
| hkl : h + k = 2n
|
| 0, 0, 1/2 | 1/2, 1/2, 1/2 | 1/2, 0, 1/2 | 0, 1/2, 1/2 |
| hkl : h, k = 2n
|
| 0, 0, 0 | 1/2, 1/2, 0 | 1/2, 0, 0 | 0, 1/2, 0 |
| hkl : h, k = 2n
|
| | no extra conditions |
| 1/4, 3/4, 1/2 | 3/4, 1/4, 1/2 |
| hkl : h + k = 2n
|
| | hkl : h + k = 2n
|
Symmetry of special projections
Along [001] p4 a' = 1/2(a - b) b' = 1/2(a + b) Origin at 1/4, 1/4, z | Along [100] p2mg a' = b b' = c Origin at x, 0, 0 | Along [110] p2mm a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P-4 (81) | 1; 2; 7; 8 |
| | [2] P4 (75) | 1; 2; 3; 4 |
| | [2] P2/n (P2/c, 13) | 1; 2; 5; 6 |
IIb | [2] P42/n (c' = 2c) (86) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P4/n (c' = 2c) (85); [5] P4/n (a' = a + 2b, b' = -2a + b or a' = a - 2b, b' = 2a + b) (85) |
Minimal non-isomorphic supergroups
I | [2] P4/nbm (125); [2] P4/nnc (126); [2] P4/nmm (129); [2] P4/ncc (130) |
II | [2] C4/m (P4/m, 83); [2] I4/m (87) |