Origin at 2 2 2 at 2 1 2
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2 |
(1) 1 | (2) 2 0, 0, z | (3) 4+(0, 0, 1/2) 0, 1/2, z | (4) 4-(0, 0, 1/2) 1/2, 0, z |
(5) 2(0, 1/2, 0) 1/4, y, 1/4 | (6) 2(1/2, 0, 0) x, 1/4, 1/4 | (7) 2 x, x, 0 | (8) 2 x, -x, 0 |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y + 1/2, x + 1/2, z + 1/2 | (4) y + 1/2, -x + 1/2, z + 1/2 | (5) -x + 1/2, y + 1/2, -z + 1/2 | (6) x + 1/2, -y + 1/2, -z + 1/2 | (7) y, x, -z | (8) -y, -x, -z |
| 00l : l = 2n h00 : h = 2n
|
| | Special: as above, plus
|
| x, x, 1/2 | -x, -x, 1/2 | -x + 1/2, x + 1/2, 0 | x + 1/2, -x + 1/2, 0 |
| 0kl : k + l = 2n
|
| x, x, 0 | -x, -x, 0 | -x + 1/2, x + 1/2, 1/2 | x + 1/2, -x + 1/2, 1/2 |
| 0kl : k + l = 2n
|
| 0, 1/2, z | 0, 1/2, z + 1/2 | 1/2, 0, -z + 1/2 | 1/2, 0, -z |
| hkl : l = 2n hk0 : h + k = 2n
|
| 0, 0, z | 1/2, 1/2, z + 1/2 | 1/2, 1/2, -z + 1/2 | 0, 0, -z |
| hkl : h + k + l = 2n
|
| | hkl : h + k + l = 2n
|
| | hkl : h + k + l = 2n
|
Symmetry of special projections
Along [001] p4gm a' = a b' = b Origin at 0, 1/2, z | Along [100] p2mg a' = b b' = c Origin at x, 1/4, 1/4 | Along [110] p2mm a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P4211 (P42, 77) | 1; 2; 3; 4 |
| | [2] P212 (C222, 21) | 1; 2; 7; 8 |
| | [2] P2211 (P21212, 18) | 1; 2; 5; 6 |
IIb | [2] P43212 (c' = 2c) (96); [2] P41212 (c' = 2c) (92) |
Maximal isomorphic subgroups of lowest index
IIc | [3] P42212 (c' = 3c) (94); [9] P42212 (a' = 3a, b' = 3b) (94) |
Minimal non-isomorphic supergroups
I | [2] P42/mbc (135); [2] P42/mnm (136); [2] P42/nmc (137); [2] P42/ncm (138) |
II | [2] C4222 (P4222, 93); [2] I422 (97); [2] P4212 (c' = 1/2c) (90) |