Origin on 4m m
Asymmetric unit | 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1; x ≤ y |
(1) 1 | (2) 2 0, 0, z | (3) 4+ 0, 0, z | (4) 4- 0, 0, z |
(5) m x, 0, z | (6) m 0, y, z | (7) m x, -x, z | (8) m x, x, z |
Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5)
Multiplicity, Wyckoff letter, Site symmetry | Coordinates | Reflection conditions |
| | General:
|
| (1) x, y, z | (2) -x, -y, z | (3) -y, x, z | (4) y, -x, z | (5) x, -y, z | (6) -x, y, z | (7) -y, -x, z | (8) y, x, z |
| no conditions |
| | Special: as above, plus
|
| x, 1/2, z | -x, 1/2, z | 1/2, x, z | 1/2, -x, z |
| no extra conditions |
| x, 0, z | -x, 0, z | 0, x, z | 0, -x, z |
| no extra conditions |
| x, x, z | -x, -x, z | -x, x, z | x, -x, z |
| no extra conditions |
| | hkl : h + k = 2n
|
| | no extra conditions |
| | no extra conditions |
Symmetry of special projections
Along [001] p4mm a' = a b' = b Origin at 0, 0, z | Along [100] p1m1 a' = b b' = c Origin at x, 0, 0 | Along [110] p1m1 a' = 1/2(-a + b) b' = c Origin at x, x, 0 |
Maximal non-isomorphic subgroups
I | | [2] P411 (P4, 75) | 1; 2; 3; 4 |
| | [2] P21m (Cmm2, 35) | 1; 2; 7; 8 |
| | [2] P2m1 (Pmm2, 25) | 1; 2; 5; 6 |
IIb | [2] P42mc (c' = 2c) (105); [2] P4cc (c' = 2c) (103); [2] P42cm (c' = 2c) (101); [2] C4md (a' = 2a, b' = 2b) (P4bm, 100); [2] F4mc (a' = 2a, b' = 2b, c' = 2c) (I4cm, 108); [2] F4mm (a' = 2a, b' = 2b, c' = 2c) (I4mm, 107) |
Maximal isomorphic subgroups of lowest index
IIc | [2] P4mm (c' = 2c) (99); [2] C4mm (a' = 2a, b' = 2b) (P4mm, 99) |
Minimal non-isomorphic supergroups
I | [2] P4/mmm (123); [2] P4/nmm (129) |